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Abstract: Suppose a system fails if the time between two consecutive shocks falls below a fixed threshold
δ ∈N and the lifetime of the system is measured as the time to the occurrence of this event. In this paper, we
consider the interarrival times between (i− 1)-th and i-th successive shocks follow a geometric distribution
with mean 1/pi ,where pi = θpi−1, i = 1,2, . . . , 0 < θ < 1, 0 < p ≤ 1. Under the above considerations, the
distribution of system lifetime is obtained. Probability generating function and than also moments of system
are derived. The proportion estimates of distribution parameters are studied. A numerical example is also
presented by using real data.
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1. Introduction
Shock models have aroused great interest in reliability theory [1]-[9]. Shock models are systems

that experience shocks of random magnitudes at random times. There are three modes of shock
models which are run shock model, extreme shock model and cumulative shock model. In an run
shock model, the amplitudes of a specified number of consecutive shocks are considered a failure
criterion. See, e.g., [3]. For extreme shock and cumulative shock model please see [1]-[3].
Let us consider, a system collapses when the time between two consecutive shocks falls below a

fixed threshold δ. Furthermore, the system’s lifetime is measured as the time to the occurrence of
that event. Such systems called as δ-shock model. Since the δ-shock model take into account the
time between two consecutive shocks instead of magnitudes, it can be considered as a forth mode
in shock models. δ-shock models have been studied by [6]-[9].
Recently, Eryilmaz [9] studied the discrete time release of the δ-shock model. In this model, he

assumed that the shocks occur according to a binomial process at all times and the interarrival
times between successive shocks have a geometric distribution with mean 1/p.
In this paper, we assume that the interarrival times between (i−1)-th and i-th successive shocks

follow a geometric distribution with mean 1/qi ,where qi = 1−θqi−1, i= 1,2, . . . , 0< θ < 1, 0< q≤ 1.
Studying such a geometric model in the context of this delta-shock model can be motivated as
follows: Consider a unit that is subject to a sequence of shocks. Assume that the unit degrades
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14 İSTATİSTİK: Journal of the Turkish Statistical Association 12(1-2), pp. 13–24, c© 2019 İstatistik

after each shock. Since a shock threshold will be lower for degraded unit, the probability that the
unit is subject to a shock will increase after each shock. If the unit is assumed to tolerate a shock
after delta time period from the previous shock, then such unit’s lifetime can be modeled by q-delta
shock model.
In Section 2, a recursive formula is given to write a probability mass function (pmf) of system.

The pmf of system is conducted by this recursive formula. The probability generating function
(pgf), mean and variance of the system lifetime are derived in Section 3. In Section 4, proportion
estimates of distribution parameters are provided and a simulation study is performed to investigate
the properties of these estimates. A numerical example is also given to show the capability of new
distribution for modelling any real data.

2. The system and its pmf
Suppose a system is subject to periodic external shocks that arrive according to following process.

The period can be thought as minute, hour, day, month etc. What the important in this model
is not the magnitude of the shocks but the length of the period between from one shock to next
shock. Let us consider a sequence I1, . . . , In of zero (there is a shock)–one (there is no shock)
Bernoulli trials such that the trials of the subsequence after the (i− 1)th shock until the ith shock
are independent with failure probability

qi = 1− θqi−1, i= 1,2, . . . , 0< θ < 1, 0< q≤ 1,
which process studied by Charalambides, Yalcin and Eryilmaz (see [10], [11]). In other words, ith
shock occurs with probability qi and does not occur with probability 1− qi. For i= 1,2, . . . , let Xi

denotes the period length between (i− 1)th and ith shocks, where X0 be the period until the first
shock. Then the random variables X0, X1, . . . are independent but not identical with the pmf

P{Xi = x}= qi(1− qi)
x−1

for x= 1,2, . . ..
Under the above discussion, the lifetime of a system can be expressed under the discrete time

δ−shock model by
Tδ =

M∑
i=0

Xi,

where the stopping random variable M is defined as

{M =m}⇐⇒{X1 > δ, ..., Xm−1 > δ, Xm ≤ δ},
for δ≥ 1 and m= 1,2, . . . , (see Eryilmaz [9]).

Lemma 1. For 0< q≤ 1, let us define
Bq (r, s) =

∑
. . .
∑

y1+y2+···+yr−1=s
y1≥0,y2≥δ,...,yr−2≥δ,yr−1≥δ

qy2+2y3+3y4+···+(r−2)yr−1 ,

where yi s are integers. Then Bq(r, s) obeys the following recurrence relation

Bq(r, s) =

⎧⎪⎪⎨⎪⎪⎩
s−(r−3)δ∑

w=δ

q(r−2)wBq(r− 1, s−w) , r≥ 3, s≥ (r− 2) δ
1 , r= 2, s≥ 0
0 , otherwise
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Proof. Considering the values that yr−1 can take, we have

Bq (r, s) =
∑

. . .
∑

y1+y2+···+yr−1=s
y1≥0,y2≥δ,...,yr−2≥δ,yr−1≥δ

qy2+2y3+3y4+···+(r−2)yr−1

=

s−(r−3)δ∑
w=δ

q(r−2)w
∑

. . .
∑

y1+y2+···+yr−2=s−w
y1≥0,y2≥δ,...,yr−2≥δ

qy2+2y3+3y4+···+(r−3)yr−2

=

s−(r−3)δ∑
w=δ

q(r−2)wBq(r− 1, s−w).

for r≥ 3 and s≥ (r− 2) δ. The other parts of the recurrence are clear.

Theorem 1. The pmf of Tδ is

P{Tδ = n}=
[n+2δ
δ+1 ]∑
i=2

{
θn−i

(
i∏

j=1

(
1− θqj−1))min(δ−1,n−i)∑

t=0

q(i−1)tBq (i, n− i− t)

}
(2.1)

for n= 2,3, ...

Proof. In order to find pmf of Tδ, Eryilmaz [9] used a random variable which is equivalent
to Tδ. Let Wδ denotes the waiting time until two 0

′s are separated by at most “δ− 1” failures in
Bernoulli trials I1, I2,. . . . Then

Tδ
st
=Wδ

for δ≥ 1. By using the above considerations, the pmf of Tδ can be obtained as follows: One of the
typical patterns of length n including i(≥ 2) 0′s for the occurrence of the event {Wn = n} is

1 . . .1︸ ︷︷ ︸
y1≥0

01 . . .1︸ ︷︷ ︸
y2≥δ

01 . . .1︸ ︷︷ ︸
y3≥δ

0 . . .01 . . .1︸ ︷︷ ︸
yi−1≥δ

01 . . .1︸ ︷︷ ︸
0≤yi<δ

0.

Then pmf of Tδ is obtained by

P {Tδ = n}

=

[n+2δ
δ+1 ]∑
i=2

∑
. . .
∑

y1+y2+···+yi=n−i
y1≥0,y2≥δ,...,yi−1≥δ,yi<δ

(
θq0
)y1 (1− θq0

)
(θq)

y2 (1− θq)× · · · × (θqi−1)yi (1− θqi−1)

=

[n+2δ
δ+1 ]∑
i=2

⎧⎪⎪⎨⎪⎪⎩θn−i

(
i∏

j=1

(
1− θqj−1)) ∑

. . .
∑

y1+y2+···+yi=n−i
y1≥0,y2≥δ,...,yi−1≥δ,yi<δ

qy2+2y3+3y4+···+(i−1)yi

⎫⎪⎪⎬⎪⎪⎭
=

[n+2δ
δ+1 ]∑
i=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩θn−i

(
i∏

j=1

(
1− θqj−1))min(δ−1,n−i)∑

t=0

q(i−1)t
∑

. . .
∑

y1+y2+···+yi−1=n−i−t
y1≥0,y2≥δ,...,yi−1≥δ

qy2+2y3+3y4+···+(i−2)yi−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
From Lemma 1, pmf of Tδ can be written by

P {Tδ = n}=
[n+2δ
δ+1 ]∑
i=2

{
θn−i

(
i∏

j=1

(
1− θqj−1))min(δ−1,n−i)∑

t=0

q(i−1)tBq (i, n− i− t)

}
.
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This completes the proof.
The pmf of Tδ is given for different choices of θ, q and δ in Table 1 and Figs.1-3. From Fig. 1-3,

it is concluded that pmf may be unimodal, bimodal or decreasing form. The distribution with pmf
(2.1) will be called as qδ−Shock model.

Table 1. Pmf of Tδ for two different cases.

θ= 0.5, q= 0.6, δ= 3 θ= 0.7, q= 0.4, δ= 5
n P (T3 = n) n P (T5 = n)
2 0.3500 2 0.2160
3 0.2800 3 0.2117
4 0.1715 4 0.1651
5 0.0857 5 0.1203
6 0.0506 6 0.0855
7 0.0290 7 0.0599
8 0.0159 8 0.0422
9 0.0083 9 0.0297
10 0.0043 10 0.0208
≥ 11 0.0047 ≥ 11 0.0488
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Figure 1. Pmf of Tδ for θ= 0.5, δ= 4 and some choices of q

Remark 1. If q= 1, then

min(δ−1,n−i)∑
t=0

Bq (i, n− i− t) =

(
n− (i− 2) δ− 1

i− 1
)
−
(

n− (i− 1) δ− 1
i− 1

)
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Figure 2. Pmf of Tδ for q= 0.3, δ= 4 and some choices of θ
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Figure 3. Pmf of Tδ for q= 0.5, θ= 0.5 and some choices of δ

and

P {Tδ = n}=
[n+2δ
δ+1 ]∑
i=2

[(
n− (i− 2) δ− 1

i− 1
)
−
(

n− (i− 1) δ− 1
i− 1

)]
θn−i (1− θ)

i



Karakaya et al.: Discrete time shock model with varying success probability
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which is result of Eryilmaz [9] for Binomial process with success probability 1− θ.

3. Probability generating function and moments
The pgf has interesting properties and can often greatly reduce the amount of hard work which

is involved in analyzing a distribution. Since it is hard to calculate the first and second moments
of Tδ from pmf given Eq. (2.1), these moments are obtained from pgf. Following theorem gives us
pgf of Tδ.

Theorem 2. The pgf of Tδ is

ψ (z) =
∞∑

m=1

(1− θ) z2
(

m−1∏
i=1

(1−θqi)z(θqiz)
δ

(θqi)
δ
(1−θqiz)

)
(1− θqm)

(
1− (θqmz)

δ
)(m−1∏

i=1

(θqi)
δ

)
(1− θz) (1− θqmz)

.

Proof. The pgf of Tδ can be written as

ψ (z) =E
(
zTδ
)
=E

(
zX0
)

E
(

z
∑M
i=1Xi

)
,

where

E
(
zX0
)
=
(1− θ) z

1− θz

and

E
(

z
∑M
i=1Xi

)
=

∞∑
m=1

E
(

z
∑M
i=1Xi |M =m

)
P (M =m)

=
∞∑

m=1

(
m−1∏
i=1

E
(
zXi |Xi > δ

))
E
(
zXm |Xm ≤ δ

)
P (M =m)

=

∞∑
m=1

(
m−1∏
i=1

(1− θqi) z (θqiz)
δ

(θqi)
δ
(1− θqiz)

)
(1− θqm) z

(
1− (θqmz)

δ
)

(1− θqmz)
(
1− (θqm)

δ
)

×
(

m−1∏
i=1

(
θqi
)δ)(

1− (θqm)
δ
)

.

The mean and variance of random variable Tδ given by using following identities

E (Tδ) = ψ′ (1) ,
V ar (Tδ) = ψ′′ (1)+ψ′ (1)− [ψ′ (1)]2 .

In the following, mean of Tδ is given with explicit expression.

Corollary 1. The mean of Tδ is

E (Tδ) =

∞∑
m=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

m−1∏
i=1

(θqi)
δ

)(
A1

m−1∑
j=1

δ+1−θqjδ
1−θqi

+A2

)
(1− θqm) (1− θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where
A1 = (1− θ) (1− θqm)

(
1− (θqm)

δ
)

,

and
A2 = 2− θ (1+ qm)− (θqm)

δ {(1− θqm) (1− δ (1− θ))+ (1− θ)} .
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The expected values of Tδ is given in Table 2 and Fig. 4 for different choices of θ, q and δ.
Variance of Tδ is not given here since the formula is too large. However, we give the variance values
for different points of θ, q and δ in Table 2 and Fig. 5 in order to observe how the parameters θ, q
and δ affect the deviation in Tδ. From these tables and figs. it is conclude that E (Tδ) and V ar (Tδ)
are increasing in θ and q but decreasing in δ.

Table 2. Expected values and variances of Tδ.

(θ, q) E (Tδ) V ar (Tδ) (θ, q) E (Tδ) V ar (Tδ)
(0.2,0.2) δ= 2 2.2932 0.3640 (0.2,0.5) δ= 2 2.3716 0.4899

δ= 3 2.2917 0.3564 δ= 3 2.3621 0.4434
δ= 4 2.2916 0.3559 δ= 4 2.3612 0.4369

(0.5,0.6) δ= 2 3.5416 3.2353 (0.7,0.9) δ= 2 7.2888 25.8703
δ= 3 3.4616 2.8589 δ= 3 6.7188 19.8635
δ= 4 3.4384 2.7056 δ= 4 6.4352 17.3293
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Figure 4. Expected value of Tδ for different points of θ, q and δ.
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Figure 5. Variance of Tδ for different points of θ, q and δ.

4. Proportion estimates
Khan et al. [12] introduced a method of proportions to estimate the discrete Weibull distribu-

tion parameters. In this section, we used their method to estimate the parameters of introduced
distribution of Tδ.
Let Tδ,1, Tδ,2, . . . , Tδ,n be a sample from pmf (2.1). For i= 1,2, . . . , n, define the indicator functions

ν1(·) and ν2(·) as
ν1 (Tδ,i) =

{
1, Tδ,i = 2
0, Tδ,i > 2

and

ν2 (Tδ,i) =

{
1, Tδ,i = 3
0, Tδ,i �= 3 .

It is easily seen that Y = 1
n

∑n

i=1 ν1 (Tδ,i) and Z = 1
n

∑n

i=1 ν2 (Tδ,i) denote the proportion of 2
′s

and 3′s in the sample, respectively. Then, the proportions Y and Z are unbiased and consistent
estimates of the probabilities

f (2) = (1− θ) (1− qθ)

and
f (3) = θ (1− θ) (1− qθ) ,

respectively. Hence the proportion estimates of θ and q are achieved for δ= 1 by solving equations

(1− θ) (1− qθ) = Y
θ (1− θ) (1− qθ) = Z

simultaneously. Then proportion estimates of θ and q are obtained, respectively, by

θ̂=
Z

Y
and q̂=

(Y 2−Y +Z)Y

Z (Z −Y )
.



Karakaya et al.: Discrete time shock model with varying success probability
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Second version of the proportion estimates of θ and q are achieved for δ > 1 by solving equations

(1− θ) (1− qθ) = Y,
θ (1− θ) (1− qθ)+ (1− θ)θq (1− qθ) = Z,

simultaneously. A numerical method such as Newton-Raphson should be used for this aim.
Some simulation studies are performed to see the performances (mean squares errors (MSEs)

and bias) of the proportion estimates given in this section. Simulation is done for different values
of n, θ, q, δ and obtained average biases and MSEs of estimates based on 10000 repetitions are
given in Table 3 and Table 4 respectively. It is observed that MSEs and Bias of estimates decrease
when n increases for all cases discussed here.

Table 3. Average biases of proportion estimates

δ= 1 δ > 1

(θ, q) n q̂ θ̂ q̂ θ̂
(0.5,0.3) 100 0.0489 −0.0144 −0.1274 0.0107

200 0.1216 −0.0060 −0.1179 0.0169
300 0.0678 −0.0043 −0.1159 0.0192
400 0.0468 −0.0043 −0.1113 0.0201
500 0.0362 −0.0010 −0.0939 0.0177
1000 0.0170 −0.0006 −0.0657 0.0134

(0.3,0.5) 100 −0.0373 −0.0047 −0.0198 −0.0220
200 −0.0165 −0.0036 −0.0394 −0.0119
300 −0.0124 −0.0016 −0.0567 −0.0060
400 −0.0064 −0.0015 −0.0605 −0.0037
500 −0.0029 −0.0011 −0.0616 −0.0016
1000 −0.0009 −0.0008 −0.0815 0.0043

(0.5,0.5) 100 0.0543 −0.0178 −0.0269 −0.0227
200 0.0177 −0.0065 −0.0515 −0.0069
300 0.0057 −0.0033 −0.0672 0.0011
400 0.0036 −0.0028 −0.0658 0.0044
500 0.0020 −0.0019 −0.0740 0.0073
1000 0.0004 −0.0009 −0.0771 0.0118

(0.1,0.7) 100 −0.1309 −0.0010 0.2090 −0.0330
200 −0.0516 −0.0002 0.1765 −0.0263
300 −0.0378 −0.0004 0.1573 −0.0227
400 −0.0255 −0.0002 0.1510 −0.0208
500 −0.0183 −0.0002 0.1383 −0.0195
1000 −0.0112 −0.0001 0.0930 −0.0139
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Table 4. Average MSEs of proportion estimates

δ= 1 δ > 1

(θ, q) n q̂ θ̂ q̂ θ̂
(0.5,0.3) 100 0.5905 0.0184 0.2482 0.0070

200 0.1216 0.0091 0.1913 0.0059
300 0.0678 0.0063 0.1627 0.0053
400 0.0468 0.0046 0.1446 0.0050
500 0.0362 0.0036 0.1206 0.0044
1000 0.0170 0.0018 0.0759 0.0030

(0.3,0.5) 100 0.1459 0.0071 0.2502 0.0060
200 0.0628 0.0035 0.2062 0.0044
300 0.0377 0.0022 0.1830 0.0037
400 0.0274 0.0017 0.1681 0.0034
500 0.0228 0.0014 0.1555 0.0031
1000 0.0107 0.0007 0.1280 0.0025

(0.5,0.5) 100 0.8287 0.0250 0.2191 0.0077
200 0.1591 0.0107 0.1733 0.0054
300 0.1197 0.0068 0.1516 0.0049
400 0.0551 0.0050 0.1367 0.0046
500 0.0438 0.0041 0.1279 0.0044
1000 0.0208 0.0020 0.0990 0.0037

(0.1,0.7) 100 0.4452 0.0013 0.3931 0.0038
200 0.1198 0.0007 0.3277 0.0027
300 0.0751 0.0004 0.2842 0.0021
400 0.0517 0.0003 0.2681 0.0019
500 0.0389 0.0003 0.2496 0.0017
1000 0.0187 0.0001 0.1979 0.0011

5. A numerical example
In this section, it is showed that qδ− Shock distribution with pmf (2.1) can be used modelling

real discrete data. Here, we consider the Phyo ([13]) records of the total number of decayed teeth
(xi) between the four deciduous molars on a sample of 100 children aged 10 and 11 years. The
data are tabulated in Table 5, where oi denote the observed frequency of observed value xi. Since
the random variable Tδ in qδ− Shock model can take the values greater or equal than 2, Xi + 2
will be used instead of Xi for the qδ− Shock model in χ2 goodness of fit analysis. In Table 6, we

Table 5. Total number of cari-
ous teeth

xi 0 1 2 3 4 Total
oi 64 17 10 6 3 100

also reported the χ2 goodness of fit test with proportion estimates of distribution parameters for
Discrete Burr (DB) [14], Discrete Pareto (DP) [14], Discrete Weibull (DW) [15], Geometric (G),
Poisson (P), qδ− Shock for δ = 1 and qδ − Shock for δ = 2 models. The proportion estimates of
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(q, β) is (0.4838,0.2656) for qδ− Shock for δ = 1. In addition, the proportion estimates of (q, β) is

(0.7617,0.2265) for qδ− Shock for δ = 2. Plug in estimation of expected values are calculated by

2.6546 and 2.5362 for δ = 1 and δ = 2 respectively. If models are descendingly ordered according

to p−values, the first three models are determined as Discrete Weibull, qδ− Shock for δ = 1 and

Discrete Pareto. Fig. 6 shows also that the model qδ− Shock for δ= 1 well fit the data. This results

mean that qδ− Shock (δ= 1) model given with this paper is a competitive model for modelling

some real discrete data.

Table 6. χ2 goodness of fit test for some discrete distributions

Expected frequencies

xi oi DB DW DP G P qδ-Shock for δ= 1 qδ-Shock for δ= 2
0 64 64 64 64 64 64 64.0031 64.0052

1 17 17 17 16.1959 23.0400 28.5624 16.9992 25.5397

2 10 6.9645 7.9926 6.8441 8.2960 6.3735 12.2279 5.7847

3 6 3.5924 4.2840 3.6325 2.9860 0.9481 4.2388 2.9650

4 3 2.1226 2.4664 2.1980 1.0750 0.1058 1.7182 1.1745

χ2
3.2294 1.3070 3.3308 8.4238 112.845 2.0938 11.8709

p-value 0.1921 0.5202 0.3434 0.0380 0.0000 0.3510 0.0000
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Figure 6. Empirical and fitted distributions based on the real data set
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