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Interval estimation for the two-parameter
bathtub-shaped lifetime distribution based on
records
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Abstract

In this paper, we study the estimation problems for the two-parameter
bathtub-shaped lifetime distribution based on upper record values. Ex-
act confidence intervals and exact joint confidence regions for the pa-
rameters are constructed. Approximate confidence intervals and regions
are also discussed based on the asymptotic normality of the maximum
likelihood estimators. A simulation study is done for the performance
of all proposed confidence intervals and regions. Two numerical exam-
ples with real data set and simulated data, are presented to illustrate
the methods proposed here.
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1. Introduction

The failure rate function is an important characteristic of a lifetime distribution and
the shapes of the failure rate functions are qualitatively different. In practice, units in a
population are followed from actual birth to death, a bathtub-shaped failure rate function
is often seen. In recent years, some lifetime distributions with bathtub-shaped failure rate
function have been investigated by several authors. For example, Bebbington et al. [5],
Gurvich et al. [10], Haynatzki et al. [11], Hjorth [12], Mudholkar and Srivastava [15],
Pham and Lai [17], Smith and Bain [18], Wang [19] and Xie et al. [22]. A recent account
on bathtub-shaped failure rate functions can be found in the review article by Nadarajah
[16].

In this paper, we discuss the two-parameter lifetime distribution with bathtub-shaped
or increasing failure rate function proposed by Chen [7]. The cumulative distribution
function (cdf) of this distribution is given by

A1—e?y
(1.1) Flx)=1—¢ , x>0, XpS>0,
and hence the probability density function (pdf) is given by

=B
Fz) = ABe? el A=l S 00 A B> 0.

The reliability function R(z) and hazard (failure rate) function H(z) of this distribution
are given, respectively, by
=B
R(z) = e ) x>0, \B>0,
and
B—1 P
H(z)=\3z" e x>0, X pB>0.

The parameter [ is the shape parameter which also affects the shape of the failure rate
function. When 8 < 1, the failure rate function of this distribution has a bathtub shape.
When g > 1, this distribution has an increasing failure rate (see, Chen [7] and Wu [21]).

Let X1, X2,... be a sequence of independent and identically distributed (iid) random
variables with cdf F'(x) and pdf f(z). An observation Xj; is called an upper record value
if its value exceeds that of all previous observations. That is, X, is an upper record
values if X; > X; for every i < j. If {U(n),n > 1} is defined by

Ul)=1 and U(n)=min{j:j>Un—1),X; > Xym-1},

for n > 2, then the sequence { Xy (,,),n > 1} provides a sequence of upper record statistics.
The sequence {U(n),n > 1} represents the record times.

The definition of record values was formulated by Chandler [6]. A record value or
record statistic is the largest or smallest value obtained from a sequence of random
variables. The theory of record values relies largely on the theory of order statistics. As
mentioned by Ahsanullah and Nevzorov [3] records are very popular because they arise
naturally in many fields of studies such as climatology, sports, medicine, traffic, industry
and so on. Such records are memorials of their time. The annals of records reflect the
progress in science and technology and enable us to study the evaluation of mankind
on the basic of record achievements in various areas of its activity. For example, in
industry and reliability studies, many products fail under stress. A wooden beam breaks
when sufficient perpendicular force is applied to it, an electronic component ceases to
function in an environment of too high temperature, and a battery dies under the stress
of time. However, the precise breaking stress or failure point varies even among identical
items. Hence, in such experiments, measurements may be made sequentially and only
the record values are observed. Lee et al. [14] indicated that there are some situations
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in lifetime testing experiments in which a failure time of a product is recorded if it
exceeds all preceding failure times. These recorded failure times are the upper record
value sequence. As mentioned by Ahmadi and Balakrishnan [1], there is a connection
between record values and minimal repair process, which is as follows. Let X be a lifetime
of a component with cdf F(z) and X (m) denote the lifetime if m minimal repairs are
allowed. Then, X (m) has the same distribution as the m-th upper record derived from
iid observations from F'(z). For more details and applications of record values, see, for
example, Ahsanullah [2] and Arnold et al. [4].

The purpose of this paper is to construct the interval estimation for the parameters
of the bathtub-shaped distribution based on record values. The rest of this paper is
organized as follows. Section 2 provides the maximum likelihood estimators (MLEs) of
the parameters 8 and A, and also establishes the approximate confidence intervals and
region for the parameters. Furthermore, the exact confidence intervals for the parameter
[ and exact joint confidence regions for the parameters 5 and A\ are obtained by using
some pivotal quantities. Section 3 conducts some simulations to study the performance of
the proposed confidence intervals and regions. Section 4 discusses two numerical examples
for illustration. Section 5 makes some conclusions.

2. Main Results

In this section, we will derive the approximate confidence intervals and region for
the parameters based on the asymptotic normality of the MLEs. The exact confidence
intervals for 8 and exact joint confidence regions for 5 and A\ will also be discussed.

2.1. Maximum Likelihood Estimation. Let Xy 1) < Xy) < -+ < Xy(m) be the
first m observed upper record values from two parameter bathtub-shaped lifetime dis-
tribution in (1.1). For notation simplicity, we will write X; for Xy ;). The likelihood
function is given by (see Arnold et al. [4])

L(B,N) = f(wm>ﬁ1f(7f%

m

28
= (AB)mere™ H:cfflexf.
i=1
The log-likelihood function is then
1(B,A) = IL(B,A)

mln X +mln g+ A(1 —e”éﬂ) + (B - 1)Zlnxi +fo
i=1 i=1

The MLEs of (8, A) can be obtained by solving the likelihood equations

BN m 5 of “ N
— Y~ =— — Az, Inz, + Inz; + x; Inx; =0,
TR >
and
ol(B,A) _m 2By _
“on A Tl-em=o

The approximate confidence intervals and region for the unknown parameters have
been discussed by some authors. See for example, Doostparast et al. [8] and Gupta
and Kundu [9]. Here we will use the asymptotic normality of the MLEs to construct
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the confidence intervals and region for the parameters. To obtain the Fisher information
matrix, we need

2 m
oNB,A) . m )\xfn(lnxm)zezg‘[l + b +fo(1nxi)2,

op* B =
PPUB,N) _ 2PUBAN) s b
280N~ ovap _ omnzm)en,

and
PUBAN) . m
o

Under suitable regularity conditions, we know that \/ﬁ(ﬁ—a A— A)’ is approximately
bivariate normal with mean (0, 0) and covariance matrix I~'(8, \) evaluated at the MLEs
(8, ), where

o%1(B,\)  9%U(B,N)

_ 1 932 DBON
IBN==5 28,0 0880
7B N2

Thus, the approximate confidence intervals for S and A can be obtained in the usual
way. Furthermore, note that m[B —B,A— )\]I(B, X) [B —BA— A]’ is asymptotically chi-
square distributed with 2 degrees of freedom. Now, using this result, the 100(1 — a)%
approximate joint confidence region for (8, \) is given by

{(BX): mB-B3=NIBNB- B3N <22},

where x2(2) is the percentile of chi-square distribution with right-tail probability o and
2 degrees of freedom.

2.2. Exact Interval Estimations. Let X; < X2 < -+ < X,,, be the first m upper
record values from the two-parameter bathtub-shaped lifetime distribution in (1.1). Set
B
Y;=—In[l-F(X)] =A™ —1), i=1,2,...,m.

Then, Y1 < Y2 < --- < Y,, are the first m upper record values from a standard exponential
distribution. Moreover, Z1 = Y1 and Z; = Y; — Yi_1, for i = 2,...,m, are iid standard
exponential random variables (see Arnold et al. [4]). Hence,

J
Vi=2> Z=2Y;
=1

has a chi-square distribution with 2j degrees of freedom and

Ui=2 > Zi=2(Ym-Y))

i=j+1

has a chi-square distribution with 2(m — j) degrees of freedom, where j =1,...,m — 1.

We can also find that U; and V; are independent random variables for each j. Let
Vi/2j (m—=3§)V;  m—j Y;

It is easy to show that T; has an F' distribution with 2(m — j) and 2j degrees of freedom

for j = 1,...,m — 1. Therefore, using the pivotal quantities 73, j = 1,...,m — 1, we

can provide m — 1 confidence intervals for 8. To obtain the confidence interval for 5, we
further need the following lemmas.
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2.1. Lemma. For any 0 < ¢1 < c2, the function
ecg -1

ecf—l

9(B) =
is a strictly increasing function of B for any B > 0.
Proof. The proof of Lemma 2.1 can be found in Chen [7]. d

2.2. Lemma. Suppose that 0 < c1 <c2 < -+ < cm. Let

i ecéﬂ—l
Tjw):m—_j[c@ 1_1 ;o J=1...,m—-1
eJ —

Then for all j =1,...,m —1,

(a) T;j(B) s strictly increasing in B for any B8 > 0.
(b) Fort >0, the equation, T;(8) =t has a unique solution in B > 0.

Proof. (a) By Lemma 2.1, it is easy to show that 7;(3) is a strictly increasing
function of 3.
(b) Since the function Tj(3) is strictly increasing in 8 > 0 with limg_,075(8) = 0
and limg_,o Tj(8) = oo, then the lemma follows.
|

Let Fa),(v,,0,) denote the upper o percentile of I distribution with v1 and v2 degrees
of freedom. Lemma 2.2 can be used to construct m — 1 exact confidence intervals for
the shape parameter 8 based on the pivotal quantities T;(8), j = 1,2,...,m — 1. These
exact confidence intervals are given in the following theorem.

2.3. Theorem. Suppose that X1 < X2 < -+ < X be the first m observed upper record
values from the two-parameter bathtub-shaped distribution. Then, for any 0 < a < 1 and
foreach 5 =1,2,....,m—1,

(SO(X17 s 7Xm7Flf%(Z(mfj)ﬂj))ng(Xl: s 7X’m7F%(2(mfj),2j))) )

is a 100(1 — @)% confidence interval for B, where o(X1,...,Xm,t) is the solution of S
for the equation

Proof. From (2.1), we know that the pivot

. xB
J e m —1
TY](ﬂ) = . |: B - 1:| )
m=7 1% —1
has an F' distribution with 2(m — j) and 25 degrees of freedom. Hence, the event
X8
7 e"m —1
Fiogem-n 2 < Li -1

< Fg2(m—j),25)

is equivalent to the event
<p(X1, vy Xom, Fl,%(g(m,j)gj)) <pB< <,0(X1, vy X, F%(g(m,j)gj)).

This completes the proof. |
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Now, let us consider another pivotal quantity to construct the confidence interval for
parameter (3 as

% Zi:l Yi _ % Zi:l(e i —1)
m 1/m — 1/m*’
112, Yi] [H;’;l(e”? - 1)]
It is easy to show that the distribution of W (3, m) does not depend on (3, ) and hence

it provides a pivotal quantity for 5. To derive the confidence interval for 8 based on this
pivotal quantity, one need the following lemma.

W(B,m) =

2.4. Lemma. Suppose that 0 < c1 <c2 < -+ < cm. Let
iy (e — 1)
[T (e = 1)]

W(B,m) =

Then,
(a) W(B,m) is strictly increasing in B for any B > 0.
(b) Fort > 1, the equation, W (8, m) =t has a unique solution in B > 0.

Proof. (a) The proof can be found in Wu et al. [20].
(b) Since the function W (3, m) is strictly increasing in S > 0 with
limg_o W(8,m) =1 and limg_,oc W (8, m) = oo, then the lemma follows.
]

Let Wo(m) be the upper o percentile of the distribution of the pivotal quantity
W (B, m). We have the following theorem.

2.5. Theorem. Suppose that X1 < X2 < --- < Xy be the first m observed upper record
values from the two-parameter bathtub-shaped distribution. Then, for any 0 < o < 1,
¢(X17 cee 7Xm7W17%(m)) < ﬂ < 1/1(le cee 7Xm7 W%(m))

is a 100(1 — @)% confidence interval for 8, where ¥(Xu1,..., Xm,t) is the solution of S
for the equation

Proof. Note that
P (Wl,%(m) <W(B,m) < W%(m)) =1—-aq,

for any 0 < a < 1. Then, by Lemma 2.4, one can construct an exact confidence interval
for 3. O

It should be mentioned here that since the exact distribution of the pivotal quan-
tity W (8, m) is too hard to derive algebraically, we need to compute the percentiles of
W (B, m) by using Monte Carlo simulation. In Table 1, we present the upper percentiles
Wam) of W(B,m) for m =2,3,...,20 and various values of «, over 50000 replications.

Now, in order to derive the exact joint confidence region for (8, ), let

(2.2) S=U; 4 V; = 2V

It is easy to show that S has a chi-square distribution with 2m degrees of freedom.
Furthermore, by Johnson et al. [13], T} defined in (2.1) and S are independent for
each j. Using the joint pivots (S,T1),..., (S, Tm—1), we can construct m — 1 exact joint
confidence regions for (5, \).
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Table 1. Upper percentile W,y of W (8, m)

m | 0.995 0.005 0.99 0.01 0.975 0.025 0.95 0.05 0.90 0.10

2 | 1.0000 7.1897 | 1.0000 4.9480 | 1.0001 3.2949 | 1.0003 2.4000 | 1.0013 1.7691
3 | 1.0004 4.9643 | 1.0010 3.9014 | 1.0028 2.8395 | 1.0061 2.2901 | 1.0131 1.8074
4 | 1.0028 4.2341 | 1.0043 3.5076 | 1.0092 2.7647 | 1.0161 2.2669 | 1.0296 1.8387
5 | 1.0071 3.4388 | 1.0100 3.0886 | 1.0182 2.5200 | 1.0277 2.1453 | 1.0461 1.8156
6 | 1.0096 3.2875 | 1.0149 2.8818 | 1.0253 2.4163 | 1.0382 2.0899 | 1.0586 1.7836
7 | 1.0169 2.9389 | 1.0227 2.6522 | 1.0344 2.2674 | 1.0489 1.9794 | 1.0725 1.7498
8 | 1.0207 2.8689 | 1.0276 2.5550 | 1.0433 2.2014 | 1.0608 1.9594 | 1.0862 1.7358
9 | 1.0278 2.7457 | 1.0352 2.4686 | 1.0513 2.1332 | 1.0684 1.9258 | 1.0955 1.7185
10 | 1.0325 2.6099 | 1.0425 2.3344 | 1.0607 2.0542 | 1.0788 1.8808 | 1.1066 1.6924
11 | 1.0362 2.4933 | 1.0452 2.2812 | 1.0641 2.0258 | 1.0836 1.8503 | 1.1107 1.6784
12 | 1.0417 2.4335 | 1.0528 2.2743 | 1.0702 2.0070 | 1.0922 1.8420 | 1.1209 1.6655
13 | 1.0462 2.3429 | 1.0674 2.1808 | 1.0762 1.9588 | 1.0991 1.8082 | 1.1292 1.6606
14 | 1.0530 2.2814 | 1.0658 2.1009 | 1.0842 1.9174 | 1.1059 1.7818 | 1.1349 1.6489
15 | 1.0546 2.2565 | 1.0650 2.0953 | 1.0886 1.9038 | 1.1091 1.7598 | 1.1404 1.6315
16 | 1.0623 2.1736 | 1.0733 2.0553 | 1.0940 1.8935 | 1.1155 1.7673 | 1.1456 1.6357

—
-

1.0641 2.1703 | 1.0768 2.0406 | 1.0979 1.8751 | 1.1194 1.7487 | 1.1482 1.6220
1.0679 2.1394 | 1.0792 2.0114 | 1.1001 1.8594 | 1.1235 1.7355 | 1.1544 1.6173
1.0779 2.1080 | 1.0873 1.9745 | 1.1071 1.8248 | 1.1300 1.7167 | 1.1607 1.6043
1.0753 2.0807 | 1.0883 1.9579 | 1.1096 1.8176 | 1.1322 1.7005 | 1.1635 1.5874

= o=
< oo

[\
(=)

Let Xi(u) be the upper a percentile of the x? distribution with v degrees of freedom.
The following theorem provide m — 1 exact joint confidence regions for (3, ).

2.6. Theorem. Suppose that X1 < Xo < --- < X,, be the first m observed upper
record values from the two-parameter bathtub-shaped distribution. Then, for any j =

1,2,...,m—1, the following inequalities determine a 100(1 — )% joint confidence region
for (B,A):
QO(XM R Xm7 F1+\/2m(2(m7j)’2j)) < 6 < 90(X17 cee 7Xm7 Fli\/zm(2(mfj),2j))7
and
2 2
Xi14v/T=a Xi1i—y1T==
== (2m) < —5—=(2m)
2(eXm — 1) 2(eXm — 1)

where 0 < a < 1, and (X1, ..., Xm,t) is the solution of B for the equation

. B
B N S
— 4 B -
m=7J | X -1

Proof. From (2.2), we know that
S =2x(eXm — 1),

has a chi-square distribution with 2m degrees of freedom, and it is independent of T} for
each j. Next, for 0 < a < 1, we have

P (F1+\/2m(2(mfj),2j) <T; < Flf‘ém(Z(mfj),zj)) =vV1-aq,
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and

P <X21+\/2m(2m) <S< Xa*ﬁ(zm) =vl-a.

From these relationships, we conclude that

P (F”iv;*"‘(z(m—j),zj) <7< F%(z(m—j),zj) ’

2 2
X1+¢2m(2m) <S< Xl*ﬁ(zm) =1-aq,

or equivalently

P<<p(X1, .. "Xm’FlJrF(Z(mfj)ﬂj)) < ,8 <

Xiivi=a X ==

1+4vV/1—a 1—V1—«a

f&m) f&m)

P Koo P 2)) 2eXh—1) 2(eXm — 1) >
=1—-a.

This completes the proof. O

3. Simulation Results

In this section, we carry out a Monte Carlo simulation to study the performance of
our proposed confidence intervals and regions. In this simulation, we randomly generate
upper record sample X1, Xo,..., X,, from a two-parameter bathtub-shaped lifetime dis-
tribution with the values of parameters (8, A\) = (0.5,0.02), (1,0.1), and (1.2,0.05) and
sample sizes m = 5,7,10,15. We then compute the 95% confidence intervals and regions
using Theorems 2.3, 2.5, and 2.6. We also provide the approximate joint confidence re-
gion obtained by the asymptotic normality of the MLEs. We replicate the process 5000
times. We present, in Tables 2 and 3, the average confidence lengths and confidence
areas. The simulation results show that:

(1)

(2)

The coverage probabilities of the exact confidence intervals for 5 and joint con-
fidence regions for (8, ) are close to the desired level of 0.95 for different pa-
rameters and sample sizes. But, the coverage probabilities of the approximate
joint confidence region for (8, A) are very low.

The pivot W (8, m) works better than the pivots T3(8), 7 = 1,...,m — 1 to
establish confidence interval for the parameter 8. This is because the average
confidence lengths based on W (3, m) are smaller than those based on T}(5),
j=1,....m—1

If we consider m — 1 pivotal quantities T1(8), ..., Tm—1(53) to establish the con-
fidence intervals for the parameter 8, We find that the pivotal quantity 75(3)
provides the shortest confidence length when j is around [%], where [y] denotes
the largest integer which is less than or equal to y.

From Table 3, we observe that in the most of cases considered, the first joint
pivot (S,T1) provides the smallest confidence area for (8,A). Thus, the first
joint confidence region is the best exact joint confidence region.

In most of the cases considered, the approximate method does not work well to
establish the joint confidence region for (3, A). It provides the low coverage prob-
abilities. Also, the average confidence area based on the approximate method is
bigger than those obtained based on the exact methods.
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Table 2. The average confidence length (CL) and coverage probability
(CP) of the 95% confidence interval for g

(B,0)=(0.5,0.02) | (B,N)=(1,0.1) [ (B,)=(1.2, 0.05)

m  Method CL CP CL CP CL CP

=
=
£

1.6223 0.947 3.7091  0.949 | 3.9695 0.952
T1(83) 6.6763 0.954 16.2102 0.948 | 18.1848 0.954
T>(B) 1.9591 0.956 5.1808 0.949 | 5.4815 0.946
T5(8) 1.9323 0.957 4.9852 0.952 | 5.6397 0.948

Tx(5) 8.8491 0.951 15.1237  0.953 | 17.5400 0.951
7 W(B,m)| 0.8227 0.953 2.0708 0.948 | 2.1691 0.953
T1(8) 5.0157 0.950 12.5267 0.952 | 13.2268 0.950
T>(B) 1.3491 0.951 3.2347 0.952 | 3.6846 0.943
T5(8) 1.0302 0.951 2.2803 0.951 | 2.6532 0.945
Tu(8) 1.0676 0.950 2.6369 0.942 | 2.6851 0.945
T5(8) 1.4285 0.948 3.4875 0.953 | 4.0611 0.941
Ts(B) 14.2993 0.950 21.7503 0.937 | 39.4215 0.948
10 W(B,m) | 0.4918 0.951 1.1508 0.947 | 1.2793 0.957
T1(8) 3.9378 0.954 9.9073 0.950 | 10.1735 0.958
T2(5) 1.0393 0.943 24302 0953 | 2.7124 0.949
T5(8) 0.6972 0.948 1.6400 0.950 | 1.8349 0.946
Tu(8) 0.6120 0.954 1.3761 0.955 | 1.5010 0.947
T5(53) 0.6077 0.955 1.4188 0.948 | 1.5628 0.952
Ts(5) 0.6669 0.946 1.5013 0.946 | 1.7014 0.948
Tz () 0.7960 0.958 1.8017 0.950 | 2.0555 0.952
Ts(B) 1.1632 0.954 2.8045 0.952 | 3.1162 0.955
To(B) 6.7247 0.948 13.1327 0.947 | 15.3015 0.951
15 W(B,m) | 0.3065 0.952 0.7895 0.950 | 0.8206 0.953

B) 3.3448 0.950 7.8014 0.952 | 8.4577 0.947
B) 0.7912 0.950 1.9128 0.941 | 2.0974 0.946
B) 0.5138 0.950 1.1995 0.954 | 1.3766 0.948
B) 0.4226 0.949 0.9857 0.947 | 1.1265 0.944
B) 0.3960 0.946 0.9055 0.951 | 0.9934 0.955
B) 0.3879 0.944 0.8782 0.947 | 0.9948 0.951
B) 0.3795 0.946 0.8580 0.954 | 0.9915 0.951
B) 0.3916 0.953 0.9160 0.950 | 1.0350 0.945
B) 0.4071 0.952 0.9896 0.949 | 1.0614 0.946

SARAART I3

T (B) 0.4661 0.954 1.0737 0.937 | 1.1867 0.949
T11(B) 0.5410 0.947 1.1941 0.951 | 1.3402 0.948
T12(B) 0.6802 0.948 1.5637 0.944 | 1.7454 0.946
T13(B) 1.0401 0.949 2.5110 0.952 | 2.7780 0.949
T14(B) 5.5032 0.948 16.648 0.950 | 13.9555 0.957
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Table 3. The average confidence area (CA) and coverage probability
(CP) of the 95% confidence region for (8, \) obtained by the exact and
approximate methods.

(B, 0)=(0.5, 0.02) | (B, N)=(1, 0.1) | (3, )=( 1.2, 0.05)

m_ Method | CA CP CA CP CA CP
5 (S,T1) | 00103  0.951 |0.1252 0.952 | 0.0699  0.950
(S,T2) |0.0156  0.958 |0.1609 0.956 | 0.0904  0.953
(S,T3) |0.0226 0960 |0.2172 0.937 | 0.1256  0.954
(S,Tx) |0.0360  0.957 |0.2989 0.954 | 0.1861  0.948
approx | 0.0216  0.837 | 0.2041 0.896 | 0.1013  0.397

7 (S, T1) |0.0067 0.955 |0.0826 0.952 | 0.0454  0.952
(S,T2) 0.0090  0.948 |0.1001 0.952 | 0.0549  0.944
(S,T3) 00119  0.951 |0.1196 0.955 | 0.0692  0.950
(S,Tx) 00158  0.951 |0.1435 0.946 | 0.0880  0.952
(S,T5) |0.0223 0956 | 0.1848 0.955 | 0.1167  0.947
(S,Ts) |0.0336  0.949 | 0.2507 0.938 | 0.1658  0.951
approx | 0.0137  0.599 | 0.1376 0.596 | 0.0812  0.309
10 (S,T:) | 0.0046 00954 | 0.0549 0.944 | 0.0297  0.956
(S,T2) |0.0056  0.950 | 0.0640 0.956 | 0.0350  0.954
(S,T3) |0.0068  0.955 |0.0712 0.953 |0.0412  0.952
(S,T) |0.0082  0.954 |0.0808 0.956 |0.0472  0.943
(S,T5) | 0.0099  0.954 |0.0940 0.946 |0.0555  0.952
(S,Ts) |0.0123  0.950 |0.1100 0.947 | 0.0671  0.954
(S,T7) |0.0158  0.956 | 0.1325 0.953 | 0.0836  0.941
(S,Ts) |0.0218  0.949 |0.1652 0.956 | 0.1083  0.956
(S,To) |0.0312  0.951 |0.2193 0.946 | 0.1509  0.954
approx | 0.0094  0.652 | 0.0952 0.666 | 0.0534  0.345
15 (S,T1) | 0.0030 0953 | 0.0367 0.947 | 0.0198  0.948
(S,T2) |0.0035  0.951 |0.0399 0.945 |0.0222  0.950
(S,T3) |0.0040  0.952 |0.0441 0.954 |0.0247  0.954
(S,T1) |0.0045  0.952 |0.0473 0.950 | 0.0271  0.948
(S,T5) |0.0051  0.950 |0.0508 0.955 | 0.0303  0.949
(S,Ts) |0.0056  0.946 | 0.0555 0.944 | 0.0330  0.950
(S,T7) |0.0065  0.944 | 0.0613 0.947 | 0.0362  0.951
(S,Ts) |0.0075  0.956 | 0.0664 0.946 | 0.0406  0.952
(S,To) |0.0087  0.951 |0.0745 0.946 | 0.0472  0.950
(S,Tio) | 0.0101 0954 | 0.0845 0.946 | 0.0545  0.952
(S,Ti1) | 0.0122 0948 | 0.0991 0.954 | 0.0649  0.946
(S,Ti2) | 0.0157 0951 | 0.1180 0.944 | 0.0781  0.950
(S,Tiz) | 0.0209 0946 | 0.1501 0.949 | 0.1009  0.941
(S,T1s) | 0.0294  0.944 | 0.1941 0942 | 0.1377  0.956
approx | 0.0057  0.586 | 0.0591 0.591 | 0.0338  0.315
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Figure 1. PP-plot of the real data set in Example 4.1.

4. Illustrative Examples

To illustrate the use of our proposed estimation methods, the following two numerical
examples are discussed.

4.1. Example. (Real data set) Here we consider the real data of the amount of
annual rainfall (in inches) recorded at the Los Angeles Civic Center for the 50 years,
from 1959 to 2009. (see the website of Los Angeles Almanac: www.laalmanac.com/
weather/we08aa.htm) The data are as follows:

8.180 4.850 18790 8380 7.930 13.680 20.440 22.000 16.580
27470  7.740 12320 7.170 21.260 14.920 14.350 7.210 12.300
33.440 19.670 26.980 8.960 10.710 31.280 10.430 12.820 17.860

7.660 2.480 8.081 7.350 11.990 21.000 7.360 8.110 24.350
12.440 12.400 31.010 9.090 11.570 17.940 4.420 16.420 9.250
37.960 13.190 3.210 13.530  9.080

We check the validity of the two-parameter bathtub-shaped distribution based on the
parameters 3 = 0.4721 and A = 0.0212 using the Kolmogorov-Smirnov (K-S) test. It
is observed that the K-S distance is 0.1385 with a corresponding p-value 0.2715. This
indicates that the two-parameter bathtub-shaped distribution provides a good fit to the
data. Figure 1 also shows the probability plot (PP) of the data. This figure supports our
conclusion. During this period, we observe the following seven upper record values:

8.18 18.79 20.44 22.00 2747 33.44 37.96

The MLEs of 8 and A\ are B = 0.432798 and \ = 0.0566, respectively. Let us now
obtain the approximate joint confidence region. Based on the result in Section 2.1, a
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Figure 2. The 95% approximate joint confidence region in Example 4.1

95% approximate joint confidence region is the ellipse

_ (55 [ 303078 3124234 1( B-p\
4= {([M) - < PR 3124234 3110288 | | a_n | I =00

where m = 7. This ellipse is provided in Figure 2. The area of this approximate joint
confidence region is 0.0291. Now, we use the methods proposed in Section 2.2 to construct
the exact confidence intervals for 5 and exact joint confidence region for (8, A). To obtain
the 95% confidence intervals for 3, we consider the pivots W (8, m), T1(8), ..., Te(8). We
need the percentiles

Wo.025(7) = 2.2674, W grs(m) = 1.0344, Fy 05(12,2) = 39.41462,
Foors12,2) = 0.1962375, Fy.025(10.4) = 8.843881, Fy g75(10,4) = 0.2237967,
Fooos(s.6) = 5599623,  Fyorss.e) = 0.2149754, Fy o568 = 4.651696,
Foors(6.8) = 0.1785835,  Fy g25(4.10) = 4468342, Fy g75(4.10) = 0.1130725,
Fo025(2.12) = 5.095867, and Fy g75(2.10) = 0.0253713.

Here, the percentiles of Wy g25(7) and Wy g75(7) are obtained from Table 1. By Theorems
2.3 and 2.5 and using the S-PLUS package, the 95% confidence intervals and correspond-
ing confidence lengths for 3 are given in Table 4.

From the simulation result in Section 3, we know that, on the average, the pivot
W (B, m) works better than the pivots T3(8), j = 1,...,6. It is not the best one in this
example because the result here is based on only one sample. Among the pivots T;(8), j =
1,...,6, we observe that, in this example, the pivot T4(5) provides the shortest confidence
interval length and hence, (0.3723,0.5095) is an optimal 95% confidence interval for §.



Table 4. The 95% confidence interval (CI) for 8 and corresponding
confidence length (CL)

Pivot CI CL
W (B, m) (0.3859,0.6861) 0.3001
Ty(B) (0.4100,1.2874) 0.8774
T»(B) (0.3909,0.9163) 0.5254
T5(8) (0.3811,0.6094) 0.2283
Tu(B) (0.3723,0.5095) 0.1372
T5(B) ( 0.3511,0.5321) 0.1810
Ts(B) (0.3214, 0.6568) 0.3354

To obtain the 95% joint confidence regions for (8, A), we need the percentiles
Fo.0127(12,2) = 78.15579,  Fy.gs73(12,2) = 0.15572,  Fp.0127(10,4) = 12.79912,
Fy.9873(10,4) = 0.179534, Fy0127(8,6) = 7-37466, [y.os73(8,6) = 0.1699301,
Fy.0127(6,8) = 5.884774, Fj.9873,6,8) = 0.135599, Fp.0127(4,10) = 5.569966,
Fy.9873,(4,10) = 0.07813, Fy.o127(2,12) = 6.421784, F 9873,(2,10) = 0.01279496,

2
X0.0127(14)

= 2837037, and X8.9873(14) = 4.888863.

By Theorem 2.6 and using the S-PLUS package for solving non-linear equation, we obtain
the following 95% joint confidence regions for (8, ) based on the joint pivots (S, Tj),

1=1,.

{

b

=Y

I ||
F’Hf—/Hf—/Hf—/Hf—/H

(B, 2)

£ 0.4091 < B < 2.1540,

£ 0.3882 < B < 1.1574,

£ 0.3792 < B < 0.6847,

£ 0.3709 < B < 0.5474,

:0.3496 < B < 0.5779,

:0.3206 < 3 < 0.7445,

4.888863

2(6(37.96)5 -1)

4.888863

2(6(37.96)5 -1)

4.888863

2(6(37.96)5 —1)

4.888863

2(6(37.96)5 —1)

4.888863

2(6(37.96)5 _ 1)

4.888863

2(6(37.96)5 _ 1)

<AL

<AL

<AL

28.37037
2( (37.96)8 _ 1)

28.37037
2(6(37 9(o(37.96)8 _ 1)

28. 37037
2(eB7. 2(e(37.96)F _ 1)

28. 37037
2(eB7- 2(e(37.96)F _ 1)

28. 37037
2(6(37 9(o(37.96)8 _ 1)

28.37037
2(6(37.96)5 _ 1)

Figure 3 shows the above joint confidence regions for parameters 8 and X. The areas
of above joint confidence regions are 0.0073, 0.0109, 0.0128, 0.0145, 0.0210, and 0.0331,
respectively. Thus, in this example, A; is the optimal joint confidence region (3, \) since
the joint pivot (S,71) provides the smallest confidence area. Note that the confidence

areas based on all the joint pivots (S,7}),j =1,...,

5 are all smaller than the area based

on the approximate method. However, the area based on joint pivot (S, Ts) is larger than

that based on the approximate method.
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Figure 3. The 95% joint confidence region for (8, \) in Example 4.1
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Figure 4. The 95% approximate joint confidence region in Example 4.2

4.2. Example. (Simulated data set) Let us consider the first four upper record
values simulated from the two-parameter bathtub-shaped distribution with 8 = 1.2 and
A = 0.05. The simulated data are as follows:

1.351052 1.989847 3.030312 3.821197

The MLEs of S and A\ are B = 0.8039041 and \ = 0.2237688, respectively. For 95%
approximate joint confidence region, we have the ellipse

—~ / ~
p-fon(227) [ e ) (320 o <o},
where m = 4. The ellipse is provided in Figure 4. The area of above joint confidence
region is 0.5331. To obtain the 95% confidence intervals for 8, we need the percentiles
Wo.025(4) = 2.7647, Wp.975(4) = 1.0092, Fp 925(6,2) = 39.33146,
Foors(6.2) = 0.137744,  Fy o054.4) = 960453, Fy o75(4.4) = 0.1041175,
Fy.025(2,6) = 7-259856 and F{ g75(2,6) = 0.0254249.

By Theorems 2.3 and 2.5 and using the S-PLUS package, the 95% confidence intervals
for B are given in Table 5.

To obtain the 95% joint confidence regions for (8, A), we need the percentiles
Fy.0127(6,2) = 78.07254,  Fy.9873(6,2) = 0.101436, Fp.0127(4,4) = 14.02461,
Fy.9873(4,4) = 0.0713032, Fp.0127(2,6) = 9-858393, Fp.9873(2,6) = 0.012809,
X8.0127(8) = ].9.434:77 and X(2).9873(8) = 1.768713.

One can obtain the 95% joint confidence regions for (8, \) as follows:

1.768713 19.4347
Bl:{(ﬂ,)\)10427<6<18677, W<)\<m},
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Table 5. The 95% confidence interval (CI) for 8 and corresponding
confidence length (CL)

Pivot CI CL
W (3, m) (0.9705,1.2487) 0.2782
Ty (B) (1.0431,1.4578) 0.4147
To(B) (1.0130,1.1272) 0.1142
T3 (B) (0.9124,1.1999) 0.2875

a1

Figure 5. The 95% joint confidence region for (5, ) in Example 4.2

1.768713 19.4347 }

1.768713 19.4347 }

Bs = {(5,» :0.9119 < B < 1.3032, 2(eBSHINE _ 1) 2(e(3:82119MF _ 1)

Figure 5 shows the above joint confidence regions. The areas of the above joint confidence

regions are 0.05005, 0.0200, and 0.0238, respectively. Thus, in this example, Bs is the
optimal joint confidence regions for parameters 5 and .

5. Conclusions

The subject of record values has received attention in the past few decades. The
two-parameter bathtub-shaped lifetime distribution can be widely used in reliability ap-
plications because of its failure rate function. We study the interval estimation of pa-
rameters of the two-parameter bathtub-shaped distribution based on record values. We
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provide three theorems based on the method of pivotal quantity to establish the exact
confidence intervals and regions for the parameters. Two numerical examples are used to
illustrate the proposed methods, and we also assess the confidence intervals and regions
by performing a Monte Carlo simulation. The simulation results provide us some idea to
choose the optimal pivots for constructing confidence intervals and regions.
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