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Abstra
t

In this paper, we study the estimation problems for the two-parameter

bathtub-shaped lifetime distribution based on upper re
ord values. Ex-

a
t 
on�den
e intervals and exa
t joint 
on�den
e regions for the pa-

rameters are 
onstru
ted. Approximate 
on�den
e intervals and regions

are also dis
ussed based on the asymptoti
 normality of the maximum

likelihood estimators. A simulation study is done for the performan
e

of all proposed 
on�den
e intervals and regions. Two numeri
al exam-

ples with real data set and simulated data, are presented to illustrate

the methods proposed here.
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1. Introdu
tion

The failure rate fun
tion is an important 
hara
teristi
 of a lifetime distribution and

the shapes of the failure rate fun
tions are qualitatively di�erent. In pra
ti
e, units in a

population are followed from a
tual birth to death, a bathtub-shaped failure rate fun
tion

is often seen. In re
ent years, some lifetime distributions with bathtub-shaped failure rate

fun
tion have been investigated by several authors. For example, Bebbington et al. [5℄,

Gurvi
h et al. [10℄, Haynatzki et al. [11℄, Hjorth [12℄, Mudholkar and Srivastava [15℄,

Pham and Lai [17℄, Smith and Bain [18℄, Wang [19℄ and Xie et al. [22℄. A re
ent a

ount

on bathtub-shaped failure rate fun
tions 
an be found in the review arti
le by Nadarajah

[16℄.

In this paper, we dis
uss the two-parameter lifetime distribution with bathtub-shaped

or in
reasing failure rate fun
tion proposed by Chen [7℄. The 
umulative distribution

fun
tion (
df) of this distribution is given by

(1.1) F (x) = 1− eλ(1−ex
β
), x > 0, λ, β > 0,

and hen
e the probability density fun
tion (pdf) is given by

f(x) = λβxβ−1e[x
β+λ(1−ex

β
)] x > 0, λ, β > 0.

The reliability fun
tion R(x) and hazard (failure rate) fun
tion H(x) of this distribution
are given, respe
tively, by

R(x) = eλ(1−ex
β
), x > 0, λ, β > 0,

and

H(x) = λβxβ−1ex
β

x > 0, λ, β > 0.

The parameter β is the shape parameter whi
h also a�e
ts the shape of the failure rate

fun
tion. When β < 1, the failure rate fun
tion of this distribution has a bathtub shape.

When β ≥ 1, this distribution has an in
reasing failure rate (see, Chen [7℄ and Wu [21℄).

Let X1, X2, . . . be a sequen
e of independent and identi
ally distributed (iid) random

variables with 
df F (x) and pdf f(x). An observation Xj is 
alled an upper re
ord value

if its value ex
eeds that of all previous observations. That is, Xj is an upper re
ord

values if Xj > Xi for every i < j. If {U(n), n ≥ 1} is de�ned by

U(1) = 1 and U(n) = min{j : j > U(n− 1), Xj > XU(n−1)},
for n ≥ 2, then the sequen
e {XU(n), n ≥ 1} provides a sequen
e of upper re
ord statisti
s.
The sequen
e {U(n), n ≥ 1} represents the re
ord times.

The de�nition of re
ord values was formulated by Chandler [6℄. A re
ord value or

re
ord statisti
 is the largest or smallest value obtained from a sequen
e of random

variables. The theory of re
ord values relies largely on the theory of order statisti
s. As

mentioned by Ahsanullah and Nevzorov [3℄ re
ords are very popular be
ause they arise

naturally in many �elds of studies su
h as 
limatology, sports, medi
ine, tra�
, industry

and so on. Su
h re
ords are memorials of their time. The annals of re
ords re�e
t the

progress in s
ien
e and te
hnology and enable us to study the evaluation of mankind

on the basi
 of re
ord a
hievements in various areas of its a
tivity. For example, in

industry and reliability studies, many produ
ts fail under stress. A wooden beam breaks

when su�
ient perpendi
ular for
e is applied to it, an ele
troni
 
omponent 
eases to

fun
tion in an environment of too high temperature, and a battery dies under the stress

of time. However, the pre
ise breaking stress or failure point varies even among identi
al

items. Hen
e, in su
h experiments, measurements may be made sequentially and only

the re
ord values are observed. Lee et al. [14℄ indi
ated that there are some situations
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in lifetime testing experiments in whi
h a failure time of a produ
t is re
orded if it

ex
eeds all pre
eding failure times. These re
orded failure times are the upper re
ord

value sequen
e. As mentioned by Ahmadi and Balakrishnan [1℄, there is a 
onne
tion

between re
ord values and minimal repair pro
ess, whi
h is as follows. Let X be a lifetime

of a 
omponent with 
df F (x) and X(m) denote the lifetime if m minimal repairs are

allowed. Then, X(m) has the same distribution as the m-th upper re
ord derived from

iid observations from F (x). For more details and appli
ations of re
ord values, see, for

example, Ahsanullah [2℄ and Arnold et al. [4℄.

The purpose of this paper is to 
onstru
t the interval estimation for the parameters

of the bathtub-shaped distribution based on re
ord values. The rest of this paper is

organized as follows. Se
tion 2 provides the maximum likelihood estimators (MLEs) of

the parameters β and λ, and also establishes the approximate 
on�den
e intervals and

region for the parameters. Furthermore, the exa
t 
on�den
e intervals for the parameter

β and exa
t joint 
on�den
e regions for the parameters β and λ are obtained by using

some pivotal quantities. Se
tion 3 
ondu
ts some simulations to study the performan
e of

the proposed 
on�den
e intervals and regions. Se
tion 4 dis
usses two numeri
al examples

for illustration. Se
tion 5 makes some 
on
lusions.

2. Main Results

In this se
tion, we will derive the approximate 
on�den
e intervals and region for

the parameters based on the asymptoti
 normality of the MLEs. The exa
t 
on�den
e

intervals for β and exa
t joint 
on�den
e regions for β and λ will also be dis
ussed.

2.1. Maximum Likelihood Estimation. Let XU(1) < XU(2) < · · · < XU(m) be the

�rst m observed upper re
ord values from two parameter bathtub-shaped lifetime dis-

tribution in (1.1). For notation simpli
ity, we will write Xi for XU(i). The likelihood

fun
tion is given by (see Arnold et al. [4℄)

L(β, λ) = f(xm)
m−1∏

i=1

f(xi)

1− F (xi)

= (λβ)meλ(1−ex
β
m )

m∏

i=1

xβ−1
i ex

β
i .

The log-likelihood fun
tion is then

l(β, λ) = lnL(β, λ)

= m lnλ+m ln β + λ(1− ex
β
m) + (β − 1)

m∑

i=1

lnxi +

m∑

i=1

xβ
i .

The MLEs of (β, λ) 
an be obtained by solving the likelihood equations

∂l(β, λ)

∂β
=
m

β
− λxβ

me
xβ
m ln xm +

m∑

i=1

ln xi +

m∑

i=1

xβ
i ln xi = 0,

and

∂l(β, λ)

∂λ
=
m

λ
+ (1− ex

β
m) = 0.

The approximate 
on�den
e intervals and region for the unknown parameters have

been dis
ussed by some authors. See for example, Doostparast et al. [8℄ and Gupta

and Kundu [9℄. Here we will use the asymptoti
 normality of the MLEs to 
onstru
t
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the 
on�den
e intervals and region for the parameters. To obtain the Fisher information

matrix, we need

∂2l(β, λ)

∂β2
= −m

β2
− λxβ

m(ln xm)2ex
β
m [1 + xβ

m] +

m∑

i=1

xβ
i (ln xi)

2,

∂2l(β, λ)

∂β∂λ
=
∂2l(β, λ)

∂λ∂β
= −xβ

m(lnxm)ex
β
m ,

and

∂2l(β, λ)

∂λ2
= −m

λ2
.

Under suitable regularity 
onditions, we know that

√
m(β̂−β, λ̂−λ)′ is approximately

bivariate normal with mean (0, 0) and 
ovarian
e matrix I−1(β, λ) evaluated at the MLEs

(β̂, λ̂), where

I(β, λ) = − 1

m





∂2l(β, λ)

∂β2

∂2l(β, λ)

∂β∂λ
∂2l(β, λ)

∂λ∂β

∂2l(β, λ)

∂λ2



 .

Thus, the approximate 
on�den
e intervals for β and λ 
an be obtained in the usual

way. Furthermore, note that m[β̂ − β, λ̂ − λ]I(β̂, λ̂)[β̂ − β, λ̂ − λ]′ is asymptoti
ally 
hi-

square distributed with 2 degrees of freedom. Now, using this result, the 100(1 − α)%
approximate joint 
on�den
e region for (β, λ) is given by

{
(β, λ) : m[β̂ − β, λ̂− λ]I(β̂, λ̂)[β̂ − β, λ̂− λ]′ ≤ χ2

α(2)
}
,

where χ2
α(2) is the per
entile of 
hi-square distribution with right-tail probability α and

2 degrees of freedom.

2.2. Exa
t Interval Estimations. Let X1 < X2 < · · · < Xm be the �rst m upper

re
ord values from the two-parameter bathtub-shaped lifetime distribution in (1.1). Set

Yi = − ln[1− F (Xi)] = λ(eX
β
i − 1), i = 1, 2, . . . ,m.

Then, Y1 < Y2 < · · · < Ym are the �rstm upper re
ord values from a standard exponential

distribution. Moreover, Z1 = Y1 and Zi = Yi − Yi−1, for i = 2, . . . ,m, are iid standard

exponential random variables (see Arnold et al. [4℄). Hen
e,

Vj = 2

j∑

i=1

Zi = 2 Yj

has a 
hi-square distribution with 2j degrees of freedom and

Uj = 2
m∑

i=j+1

Zi = 2 (Ym − Yj)

has a 
hi-square distribution with 2(m − j) degrees of freedom, where j = 1, . . . ,m− 1.
We 
an also �nd that Uj and Vj are independent random variables for ea
h j. Let

(2.1) Tj =
Uj/2(m− j)

Vj/2j
=

j Uj

(m− j)Vj
=

j

m− j

(
Ym − Yj

Yj

)
.

It is easy to show that Tj has an F distribution with 2(m− j) and 2j degrees of freedom
for j = 1, . . . ,m − 1. Therefore, using the pivotal quantities Tj , j = 1, . . . ,m − 1, we

an provide m− 1 
on�den
e intervals for β. To obtain the 
on�den
e interval for β, we
further need the following lemmas.
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2.1. Lemma. For any 0 < c1 < c2, the fun
tion

g(β) =
ec

β
2 − 1

ec
β
1 − 1

is a stri
tly in
reasing fun
tion of β for any β > 0.

Proof. The proof of Lemma 2.1 
an be found in Chen [7℄. �

2.2. Lemma. Suppose that 0 < c1 < c2 < · · · < cm. Let

Tj(β) =
j

m− j

[
ec

β
m − 1

ec
β
j − 1

− 1

]
, j = 1, . . . ,m− 1.

Then for all j = 1, . . . ,m− 1,

(a) Tj(β) is stri
tly in
reasing in β for any β > 0.
(b) For t > 0, the equation, Tj(β) = t has a unique solution in β > 0.

Proof. (a) By Lemma 2.1, it is easy to show that Tj(β) is a stri
tly in
reasing

fun
tion of β.
(b) Sin
e the fun
tion Tj(β) is stri
tly in
reasing in β > 0 with limβ→0 Tj(β) = 0

and limβ→∞ Tj(β) = ∞, then the lemma follows.

�

Let F(α),(υ1,υ2) denote the upper α per
entile of F distribution with υ1 and υ2 degrees
of freedom. Lemma 2.2 
an be used to 
onstru
t m − 1 exa
t 
on�den
e intervals for

the shape parameter β based on the pivotal quantities Tj(β), j = 1, 2, . . . ,m− 1. These
exa
t 
on�den
e intervals are given in the following theorem.

2.3. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper re
ord

values from the two-parameter bathtub-shaped distribution. Then, for any 0 < α < 1 and

for ea
h j = 1, 2, . . . ,m− 1,
(
ϕ(X1, . . . , Xm, F1−α

2
(2(m−j),2j)), ϕ(X1, . . . , Xm, Fα

2
(2(m−j),2j))

)
,

is a 100(1 − α)% 
on�den
e interval for β, where ϕ(X1, . . . , Xm, t) is the solution of β
for the equation

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]
= t.

Proof. From (2.1), we know that the pivot

Tj(β) =
j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]

,

has an F distribution with 2(m− j) and 2j degrees of freedom. Hen
e, the event

F1−α
2
(2(m−j),2j) <

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]
< Fα

2
(2(m−j),2j),

is equivalent to the event

ϕ(X1, . . . , Xm, F1−α
2
(2(m−j),2j)) < β < ϕ(X1, . . . , Xm, Fα

2
(2(m−j),2j)).

This 
ompletes the proof. �
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Now, let us 
onsider another pivotal quantity to 
onstru
t the 
on�den
e interval for

parameter β as

W (β,m) =
1
m

∑m
i=1 Yi

[∏m
i=1 Yi

]1/m =
1
m

∑m
i=1(e

x
β
i − 1)

[∏m
i=1(e

x
β
i − 1)

]1/m .

It is easy to show that the distribution of W (β,m) does not depend on (β, λ) and hen
e

it provides a pivotal quantity for β. To derive the 
on�den
e interval for β based on this

pivotal quantity, one need the following lemma.

2.4. Lemma. Suppose that 0 < c1 < c2 < · · · < cm. Let

W (β,m) =
1
m

∑m
i=1(e

c
β
i − 1)

[∏m
i=1(e

c
β
i − 1)

]1/m .

Then,

(a) W (β,m) is stri
tly in
reasing in β for any β > 0.
(b) For t > 1, the equation, W (β,m) = t has a unique solution in β > 0.

Proof. (a) The proof 
an be found in Wu et al. [20℄.

(b) Sin
e the fun
tion W (β,m) is stri
tly in
reasing in β > 0 with

limβ→0W (β,m) = 1 and limβ→∞W (β,m) = ∞, then the lemma follows.

�

Let Wα(m) be the upper α per
entile of the distribution of the pivotal quantity

W (β,m). We have the following theorem.

2.5. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper re
ord

values from the two-parameter bathtub-shaped distribution. Then, for any 0 < α < 1,

ψ(X1, . . . , Xm,W1−α
2
(m)) < β < ψ(X1, . . . , Xm,Wα

2
(m))

is a 100(1 − α)% 
on�den
e interval for β, where ψ(X1, . . . , Xm, t) is the solution of β
for the equation

1
m

∑m
i=1(e

X
β
i − 1)

[∏m
i=1(e

X
β
i − 1)

]1/m = t.

Proof. Note that

P
(
W1−α

2
(m) < W (β,m) < Wα

2
(m)

)
= 1− α,

for any 0 < α < 1. Then, by Lemma 2.4, one 
an 
onstru
t an exa
t 
on�den
e interval

for β. �

It should be mentioned here that sin
e the exa
t distribution of the pivotal quan-

tity W (β,m) is too hard to derive algebrai
ally, we need to 
ompute the per
entiles of

W (β,m) by using Monte Carlo simulation. In Table 1, we present the upper per
entiles

Wα(m) of W (β,m) for m = 2, 3, . . . , 20 and various values of α, over 50000 repli
ations.

Now, in order to derive the exa
t joint 
on�den
e region for (β, λ), let

(2.2) S = Uj + Vj = 2Ym.

It is easy to show that S has a 
hi-square distribution with 2m degrees of freedom.

Furthermore, by Johnson et al. [13℄, Tj de�ned in (2.1) and S are independent for

ea
h j. Using the joint pivots (S, T1), . . . , (S, Tm−1), we 
an 
onstru
t m− 1 exa
t joint


on�den
e regions for (β, λ).
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Table 1. Upper per
entile Wα(m) of W (β,m)

α

m 0.995 0.005 0.99 0.01 0.975 0.025 0.95 0.05 0.90 0.10

2 1.0000 7.1897 1.0000 4.9480 1.0001 3.2949 1.0003 2.4000 1.0013 1.7691

3 1.0004 4.9643 1.0010 3.9014 1.0028 2.8395 1.0061 2.2901 1.0131 1.8074

4 1.0028 4.2341 1.0043 3.5076 1.0092 2.7647 1.0161 2.2669 1.0296 1.8387

5 1.0071 3.4388 1.0100 3.0886 1.0182 2.5200 1.0277 2.1453 1.0461 1.8156

6 1.0096 3.2875 1.0149 2.8818 1.0253 2.4163 1.0382 2.0899 1.0586 1.7836

7 1.0169 2.9389 1.0227 2.6522 1.0344 2.2674 1.0489 1.9794 1.0725 1.7498

8 1.0207 2.8689 1.0276 2.5550 1.0433 2.2014 1.0608 1.9594 1.0862 1.7358

9 1.0278 2.7457 1.0352 2.4686 1.0513 2.1332 1.0684 1.9258 1.0955 1.7185

10 1.0325 2.6099 1.0425 2.3344 1.0607 2.0542 1.0788 1.8808 1.1066 1.6924

11 1.0362 2.4933 1.0452 2.2812 1.0641 2.0258 1.0836 1.8503 1.1107 1.6784

12 1.0417 2.4335 1.0528 2.2743 1.0702 2.0070 1.0922 1.8420 1.1209 1.6655

13 1.0462 2.3429 1.0574 2.1808 1.0762 1.9588 1.0991 1.8082 1.1292 1.6606

14 1.0530 2.2814 1.0658 2.1009 1.0842 1.9174 1.1059 1.7818 1.1349 1.6489

15 1.0546 2.2565 1.0650 2.0953 1.0886 1.9038 1.1091 1.7598 1.1404 1.6315

16 1.0623 2.1736 1.0733 2.0553 1.0940 1.8935 1.1155 1.7673 1.1456 1.6357

17 1.0641 2.1703 1.0768 2.0406 1.0979 1.8751 1.1194 1.7487 1.1482 1.6220

18 1.0679 2.1394 1.0792 2.0114 1.1001 1.8594 1.1235 1.7355 1.1544 1.6173

19 1.0779 2.1080 1.0873 1.9745 1.1071 1.8248 1.1300 1.7167 1.1607 1.6043

20 1.0753 2.0807 1.0883 1.9579 1.1096 1.8176 1.1322 1.7005 1.1635 1.5874

Let χ2
α(υ) be the upper α per
entile of the χ2

distribution with υ degrees of freedom.

The following theorem provide m− 1 exa
t joint 
on�den
e regions for (β, λ).

2.6. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper

re
ord values from the two-parameter bathtub-shaped distribution. Then, for any j =
1, 2, . . . ,m−1, the following inequalities determine a 100(1−α)% joint 
on�den
e region

for (β, λ):

ϕ
(
X1, . . . , Xm, F 1+

√
1−α
2

(2(m−j),2j)

)
< β < ϕ

(
X1, . . . , Xm, F 1−

√
1−α
2

(2(m−j),2j)

)
,

and

χ2
1+

√
1−α
2

(2m)

2(eX
β
m − 1)

< λ <
χ2

1−
√

1−α
2

(2m)

2(eX
β
m − 1)

.

where 0 < α < 1, and ϕ(X1, . . . , Xm, t) is the solution of β for the equation

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]

= t.

Proof. From (2.2), we know that

S = 2λ(eX
β
m − 1),

has a 
hi-square distribution with 2m degrees of freedom, and it is independent of Tj for

ea
h j. Next, for 0 < α < 1, we have

P
(
F 1+

√
1−α
2

(2(m−j),2j)
< Tj < F 1−

√
1−α
2

(2(m−j),2j)

)
=

√
1− α,
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and

P

(
χ2

1+
√

1−α
2

(2m)
< S < χ2

1−
√

1−α
2

(2m)

)
=

√
1− α.

From these relationships, we 
on
lude that

P
(
F 1+

√
1−α
2

(2(m−j),2j)
< Tj < F 1−

√
1−α
2

(2(m−j),2j)
,

χ2
1+

√
1−α
2

(2m)
< S < χ2

1−
√

1−α
2

(2m)

)
= 1− α,

or equivalently

P

(
ϕ(X1, . . . , Xm, F 1+

√
1−α
2

(2(m−j),2j)
) < β <

ϕ(X1, . . . , Xm, F 1−
√

1−α
2

(2(m−j),2j)
) ,
χ2

1+
√

1−α
2

(2m)

2(eX
β
m − 1)

< λ <
χ2

1−
√

1−α
2

(2m)

2(eX
β
m − 1)

)

= 1− α.

This 
ompletes the proof. �

3. Simulation Results

In this se
tion, we 
arry out a Monte Carlo simulation to study the performan
e of

our proposed 
on�den
e intervals and regions. In this simulation, we randomly generate

upper re
ord sample X1, X2, . . . , Xm from a two-parameter bathtub-shaped lifetime dis-

tribution with the values of parameters (β, λ) = (0.5, 0.02), (1, 0.1), and (1.2, 0.05) and
sample sizes m = 5, 7, 10, 15. We then 
ompute the 95% 
on�den
e intervals and regions

using Theorems 2.3, 2.5, and 2.6. We also provide the approximate joint 
on�den
e re-

gion obtained by the asymptoti
 normality of the MLEs. We repli
ate the pro
ess 5000

times. We present, in Tables 2 and 3, the average 
on�den
e lengths and 
on�den
e

areas. The simulation results show that:

(1) The 
overage probabilities of the exa
t 
on�den
e intervals for β and joint 
on-

�den
e regions for (β, λ) are 
lose to the desired level of 0.95 for di�erent pa-

rameters and sample sizes. But, the 
overage probabilities of the approximate

joint 
on�den
e region for (β, λ) are very low.

(2) The pivot W (β,m) works better than the pivots Tj(β), j = 1, . . . ,m − 1 to

establish 
on�den
e interval for the parameter β. This is be
ause the average


on�den
e lengths based on W (β,m) are smaller than those based on Tj(β),
j = 1, . . . ,m− 1.

(3) If we 
onsider m− 1 pivotal quantities T1(β), . . . , Tm−1(β) to establish the 
on-

�den
e intervals for the parameter β, We �nd that the pivotal quantity Tj(β)
provides the shortest 
on�den
e length when j is around [m

2
], where [y] denotes

the largest integer whi
h is less than or equal to y.
(4) From Table 3, we observe that in the most of 
ases 
onsidered, the �rst joint

pivot (S, T1) provides the smallest 
on�den
e area for (β, λ). Thus, the �rst

joint 
on�den
e region is the best exa
t joint 
on�den
e region.

(5) In most of the 
ases 
onsidered, the approximate method does not work well to

establish the joint 
on�den
e region for (β, λ). It provides the low 
overage prob-

abilities. Also, the average 
on�den
e area based on the approximate method is

bigger than those obtained based on the exa
t methods.
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Table 2. The average 
on�den
e length (CL) and 
overage probability

(CP) of the 95% 
on�den
e interval for β

(β, λ)=( 0.5, 0.02) (β, λ)=( 1, 0.1) (β, λ)=( 1.2, 0.05)

m Method CL CP CL CP CL CP

5 W (β,m) 1.6223 0.947 3.7091 0.949 3.9695 0.952

T1(β) 6.6763 0.954 16.2102 0.948 18.1848 0.954

T2(β) 1.9591 0.956 5.1808 0.949 5.4815 0.946

T3(β) 1.9323 0.957 4.9852 0.952 5.6397 0.948

T4(β) 8.8491 0.951 15.1237 0.953 17.5400 0.951

7 W (β,m) 0.8227 0.953 2.0708 0.948 2.1691 0.953

T1(β) 5.0157 0.950 12.5267 0.952 13.2268 0.950

T2(β) 1.3491 0.951 3.2347 0.952 3.6846 0.943

T3(β) 1.0302 0.951 2.2803 0.951 2.6532 0.945

T4(β) 1.0676 0.950 2.6369 0.942 2.6851 0.945

T5(β) 1.4285 0.948 3.4875 0.953 4.0611 0.941

T6(β) 14.2993 0.950 21.7503 0.937 39.4215 0.948

10 W (β,m) 0.4918 0.951 1.1508 0.947 1.2793 0.957

T1(β) 3.9378 0.954 9.9073 0.950 10.1735 0.958

T2(β) 1.0393 0.943 2.4302 0.953 2.7124 0.949

T3(β) 0.6972 0.948 1.6400 0.950 1.8349 0.946

T4(β) 0.6120 0.954 1.3761 0.955 1.5010 0.947

T5(β) 0.6077 0.955 1.4188 0.948 1.5628 0.952

T6(β) 0.6669 0.946 1.5013 0.946 1.7014 0.948

T7(β) 0.7960 0.958 1.8017 0.950 2.0555 0.952

T8(β) 1.1632 0.954 2.8045 0.952 3.1162 0.955

T9(β) 6.7247 0.948 13.1327 0.947 15.3015 0.951

15 W (β,m) 0.3065 0.952 0.7895 0.950 0.8206 0.953

T1(β) 3.3448 0.950 7.8014 0.952 8.4577 0.947

T2(β) 0.7912 0.950 1.9128 0.941 2.0974 0.946

T3(β) 0.5138 0.950 1.1995 0.954 1.3766 0.948

T4(β) 0.4226 0.949 0.9857 0.947 1.1265 0.944

T5(β) 0.3960 0.946 0.9055 0.951 0.9934 0.955

T6(β) 0.3879 0.944 0.8782 0.947 0.9948 0.951

T7(β) 0.3795 0.946 0.8580 0.954 0.9915 0.951

T8(β) 0.3916 0.953 0.9160 0.950 1.0350 0.945

T9(β) 0.4071 0.952 0.9896 0.949 1.0614 0.946

T10(β) 0.4661 0.954 1.0737 0.937 1.1867 0.949

T11(β) 0.5410 0.947 1.1941 0.951 1.3402 0.948

T12(β) 0.6802 0.948 1.5637 0.944 1.7454 0.946

T13(β) 1.0401 0.949 2.5110 0.952 2.7780 0.949

T14(β) 5.5032 0.948 16.648 0.950 13.9555 0.957
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Table 3. The average 
on�den
e area (CA) and 
overage probability

(CP) of the 95% 
on�den
e region for (β, λ) obtained by the exa
t and

approximate methods.

(β, λ)=( 0.5, 0.02) (β, λ)=( 1, 0.1) (β, λ)=( 1.2, 0.05)

m Method CA CP CA CP CA CP

5 (S, T1) 0.0103 0.951 0.1252 0.952 0.0699 0.950

(S, T2) 0.0156 0.958 0.1609 0.956 0.0904 0.953

(S, T3) 0.0226 0.960 0.2172 0.937 0.1256 0.954

(S, T4) 0.0360 0.957 0.2989 0.954 0.1861 0.948

approx 0.0216 0.837 0.2041 0.896 0.1013 0.397

7 (S, T1) 0.0067 0.955 0.0826 0.952 0.0454 0.952

(S, T2) 0.0090 0.948 0.1001 0.952 0.0549 0.944

(S, T3) 0.0119 0.951 0.1196 0.955 0.0692 0.950

(S, T4) 0.0158 0.951 0.1435 0.946 0.0880 0.952

(S, T5) 0.0223 0.956 0.1848 0.955 0.1167 0.947

(S, T6) 0.0336 0.949 0.2507 0.938 0.1658 0.951

approx 0.0137 0.599 0.1376 0.596 0.0812 0.309

10 (S, T1) 0.0046 0.954 0.0549 0.944 0.0297 0.956

(S, T2) 0.0056 0.950 0.0640 0.956 0.0350 0.954

(S, T3) 0.0068 0.955 0.0712 0.953 0.0412 0.952

(S, T4) 0.0082 0.954 0.0808 0.956 0.0472 0.943

(S, T5) 0.0099 0.954 0.0940 0.946 0.0555 0.952

(S, T6) 0.0123 0.950 0.1100 0.947 0.0671 0.954

(S, T7) 0.0158 0.956 0.1325 0.953 0.0836 0.941

(S, T8) 0.0218 0.949 0.1652 0.956 0.1083 0.956

(S, T9) 0.0312 0.951 0.2193 0.946 0.1509 0.954

approx 0.0094 0.652 0.0952 0.666 0.0534 0.345

15 (S, T1) 0.0030 0.953 0.0367 0.947 0.0198 0.948

(S, T2) 0.0035 0.951 0.0399 0.945 0.0222 0.950

(S, T3) 0.0040 0.952 0.0441 0.954 0.0247 0.954

(S, T4) 0.0045 0.952 0.0473 0.950 0.0271 0.948

(S, T5) 0.0051 0.950 0.0508 0.955 0.0303 0.949

(S, T6) 0.0056 0.946 0.0555 0.944 0.0330 0.950

(S, T7) 0.0065 0.944 0.0613 0.947 0.0362 0.951

(S, T8) 0.0075 0.956 0.0664 0.946 0.0406 0.952

(S, T9) 0.0087 0.951 0.0745 0.946 0.0472 0.950

(S,T10) 0.0101 0.954 0.0845 0.946 0.0545 0.952

(S,T11) 0.0122 0.948 0.0991 0.954 0.0649 0.946

(S,T12) 0.0157 0.951 0.1180 0.944 0.0781 0.950

(S,T13) 0.0209 0.946 0.1501 0.949 0.1009 0.941

(S,T14) 0.0294 0.944 0.1941 0.942 0.1377 0.956

approx 0.0057 0.586 0.0591 0.591 0.0338 0.315
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Figure 1. PP-plot of the real data set in Example 4.1.

4. Illustrative Examples

To illustrate the use of our proposed estimation methods, the following two numeri
al

examples are dis
ussed.

4.1. Example. (Real data set) Here we 
onsider the real data of the amount of

annual rainfall (in in
hes) re
orded at the Los Angeles Civi
 Center for the 50 years,

from 1959 to 2009. (see the website of Los Angeles Almana
: www.laalmana
.
om/

weather/we08aa.htm) The data are as follows:

8.180 4.850 18.790 8.380 7.930 13.680 20.440 22.000 16.580

27.470 7.740 12.320 7.170 21.260 14.920 14.350 7.210 12.300

33.440 19.670 26.980 8.960 10.710 31.280 10.430 12.820 17.860

7.660 2.480 8.081 7.350 11.990 21.000 7.360 8.110 24.350

12.440 12.400 31.010 9.090 11.570 17.940 4.420 16.420 9.250

37.960 13.190 3.210 13.530 9.080

We 
he
k the validity of the two-parameter bathtub-shaped distribution based on the

parameters β̂ = 0.4721 and λ̂ = 0.0212 using the Kolmogorov-Smirnov (K-S) test. It

is observed that the K-S distan
e is 0.1385 with a 
orresponding p-value 0.2715. This

indi
ates that the two-parameter bathtub-shaped distribution provides a good �t to the

data. Figure 1 also shows the probability plot (PP) of the data. This �gure supports our


on
lusion. During this period, we observe the following seven upper re
ord values:

8.18 18.79 20.44 22.00 27.47 33.44 37.96

The MLEs of β and λ are β̂ = 0.432798 and λ̂ = 0.0566, respe
tively. Let us now

obtain the approximate joint 
on�den
e region. Based on the result in Se
tion 2.1, a
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Figure 2. The 95% approximate joint 
on�den
e region in Example 4.1

95% approximate joint 
on�den
e region is the ellipse

A =

{
(β, λ) : m

(
β̂ − β

λ̂− λ

)
′ [

340.3978 312.4234
312.4234 311.9288

](
β̂ − β

λ̂− λ

)
− 5.9991 ≤ 0

}
,

where m = 7. This ellipse is provided in Figure 2. The area of this approximate joint


on�den
e region is 0.0291. Now, we use the methods proposed in Se
tion 2.2 to 
onstru
t

the exa
t 
on�den
e intervals for β and exa
t joint 
on�den
e region for (β, λ). To obtain
the 95% 
on�den
e intervals for β, we 
onsider the pivotsW (β,m), T1(β), . . . , T6(β). We

need the per
entiles

W0.025(7) = 2.2674, W0.975(7) = 1.0344, F0.025(12,2) = 39.41462,

F0.975(12,2) = 0.1962375, F0.025(10,4) = 8.843881, F0.975(10,4) = 0.2237967,

F0.025(8,6) = 5.599623, F0.975(8,6) = 0.2149754, F0.025(6,8) = 4.651696,

F0.975(6,8) = 0.1785835, F0.025(4,10) = 4.468342, F0.975(4,10) = 0.1130725,

F0.025(2,12) = 5.095867, and F0.975(2,10) = 0.0253713.

Here, the per
entiles of W0.025(7) and W0.975(7) are obtained from Table 1. By Theorems

2.3 and 2.5 and using the S-PLUS pa
kage, the 95% 
on�den
e intervals and 
orrespond-

ing 
on�den
e lengths for β are given in Table 4.

From the simulation result in Se
tion 3, we know that, on the average, the pivot

W (β,m) works better than the pivots Tj(β), j = 1, . . . , 6. It is not the best one in this

example be
ause the result here is based on only one sample. Among the pivots Tj(β), j =
1, . . . , 6, we observe that, in this example, the pivot T4(β) provides the shortest 
on�den
e
interval length and hen
e, (0.3723, 0.5095) is an optimal 95% 
on�den
e interval for β.
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Table 4. The 95% 
on�den
e interval (CI) for β and 
orresponding


on�den
e length (CL)

Pivot CI CL

W (β,m) (0.3859,0.6861) 0.3001

T1(β) (0.4100,1.2874) 0.8774

T2(β) (0.3909,0.9163) 0.5254

T3(β) (0.3811,0.6094) 0.2283

T4(β) (0.3723,0.5095) 0.1372

T5(β) ( 0.3511,0.5321) 0.1810

T6(β) ( 0.3214, 0.6568) 0.3354

To obtain the 95% joint 
on�den
e regions for (β, λ), we need the per
entiles

F0.0127(12,2) = 78.15579, F0.9873(12,2) = 0.15572, F0.0127(10,4) = 12.79912,

F0.9873(10,4) = 0.179534, F0.0127(8,6) = 7.37466, F0.9873(8,6) = 0.1699301,

F0.0127(6,8) = 5.884774, F0.9873,(6,8) = 0.135599, F0.0127(4,10) = 5.569966,

F0.9873,(4,10) = 0.07813, F0.0127(2,12) = 6.421784, F0.9873,(2,10) = 0.01279496,

χ2
0.0127(14) = 28.37037, and χ2

0.9873(14) = 4.888863.

By Theorem 2.6 and using the S-PLUS pa
kage for solving non-linear equation, we obtain

the following 95% joint 
on�den
e regions for (β, λ) based on the joint pivots (S, Tj),
j = 1, . . . , 6:

A1 =

{
(β, λ) : 0.4091 < β < 2.1540,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A2 =

{
(β, λ) : 0.3882 < β < 1.1574,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A3 =

{
(β, λ) : 0.3792 < β < 0.6847,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A4 =

{
(β, λ) : 0.3709 < β < 0.5474,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A5 =

{
(β, λ) : 0.3496 < β < 0.5779,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A6 =

{
(β, λ) : 0.3206 < β < 0.7445,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
.

Figure 3 shows the above joint 
on�den
e regions for parameters β and λ. The areas

of above joint 
on�den
e regions are 0.0073, 0.0109, 0.0128, 0.0145, 0.0210, and 0.0331,

respe
tively. Thus, in this example, A1 is the optimal joint 
on�den
e region (β, λ) sin
e
the joint pivot (S, T1) provides the smallest 
on�den
e area. Note that the 
on�den
e

areas based on all the joint pivots (S, Tj), j = 1, . . . , 5 are all smaller than the area based

on the approximate method. However, the area based on joint pivot (S, T6) is larger than
that based on the approximate method.
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Figure 3. The 95% joint 
on�den
e region for (β, λ) in Example 4.1



413

Figure 4. The 95% approximate joint 
on�den
e region in Example 4.2

4.2. Example. (Simulated data set) Let us 
onsider the �rst four upper re
ord

values simulated from the two-parameter bathtub-shaped distribution with β = 1.2 and

λ = 0.05. The simulated data are as follows:

1.351052 1.989847 3.030312 3.821197

The MLEs of β and λ are β̂ = 0.8039041 and λ̂ = 0.2237688, respe
tively. For 95%

approximate joint 
on�den
e region, we have the ellipse

B =

{

(β, λ) : m

(
β̂ − β

λ̂− λ

)
′ [

21.19736 18.58491
18.58491 19.97105

](
β̂ − β

λ̂− λ

)

− 5.9991 ≤ 0

}

,

where m = 4. The ellipse is provided in Figure 4. The area of above joint 
on�den
e

region is 0.5331. To obtain the 95% 
on�den
e intervals for β, we need the per
entiles

W0.025(4) = 2.7647, W0.975(4) = 1.0092, F0.025(6,2) = 39.33146,

F0.975(6,2) = 0.137744, F0.025(4,4) = 9.60453, F0.975(4,4) = 0.1041175,

F0.025(2,6) = 7.259856 and F0.975(2,6) = 0.0254249.

By Theorems 2.3 and 2.5 and using the S-PLUS pa
kage, the 95% 
on�den
e intervals

for β are given in Table 5.

To obtain the 95% joint 
on�den
e regions for (β, λ), we need the per
entiles

F0.0127(6,2) = 78.07254, F0.9873(6,2) = 0.101436, F0.0127(4,4) = 14.02461,

F0.9873(4,4) = 0.0713032, F0.0127(2,6) = 9.858393, F0.9873(2,6) = 0.012809,

χ2
0.0127(8) = 19.4347, and χ2

0.9873(8) = 1.768713.

One 
an obtain the 95% joint 
on�den
e regions for (β, λ) as follows:

B1 =

{
(β, λ) : 1.0427 < β < 1.8677,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
,
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Table 5. The 95% 
on�den
e interval (CI) for β and 
orresponding


on�den
e length (CL)

Pivot CI CL

W (β,m) (0.9705,1.2487) 0.2782

T1(β) (1.0431,1.4578) 0.4147

T2(β) (1.0130,1.1272) 0.1142

T3(β) (0.9124,1.1999) 0.2875

Figure 5. The 95% joint 
on�den
e region for (β, λ) in Example 4.2

B2 =

{
(β, λ) : 1.0126 < β < 1.1802,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
,

B3 =

{
(β, λ) : 0.9119 < β < 1.3032,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
.

Figure 5 shows the above joint 
on�den
e regions. The areas of the above joint 
on�den
e

regions are 0.05005, 0.0200, and 0.0238, respe
tively. Thus, in this example, B2 is the

optimal joint 
on�den
e regions for parameters β and λ.

5. Con
lusions

The subje
t of re
ord values has re
eived attention in the past few de
ades. The

two-parameter bathtub-shaped lifetime distribution 
an be widely used in reliability ap-

pli
ations be
ause of its failure rate fun
tion. We study the interval estimation of pa-

rameters of the two-parameter bathtub-shaped distribution based on re
ord values. We
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provide three theorems based on the method of pivotal quantity to establish the exa
t


on�den
e intervals and regions for the parameters. Two numeri
al examples are used to

illustrate the proposed methods, and we also assess the 
on�den
e intervals and regions

by performing a Monte Carlo simulation. The simulation results provide us some idea to


hoose the optimal pivots for 
onstru
ting 
on�den
e intervals and regions.
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