Research Article
BibTex RIS Cite

Modelling inertial measurement unit error parameters for an unmanned air vehicle

Year 2024, Volume: 66 Issue: 1, 64 - 81
https://doi.org/10.33769/aupse.1308165

Abstract

This paper demonstrates a study that focuses on the modeling, design, and realization of an Inertial Measurement Unit (IMU) component for the use of Unmanned Aerial Vehicles (UAV). The experimental data is obtained by multiple flights conducted by the realized UAV (Teknofest–SEMRUK team UAV). The structure is remodeled for increasing the accuracy, and performance of the UAV after the conducted flights. Noise parameters are estimated throughout the Allan variance analysis. MEMS technology-based capacitive-type accelerometers and gyroscopes are preferred. This paper also discusses the error types and compares the real data with the modeled simulation data. Systematic errors of the inertial sensors are simulated according to their datasheet parameters. Sensor filters and noise are modeled and they are also implemented in the simulation. Simulation results and UAV measurements are compared to observe the efficiency of modeling. A complementary filter is presented and combined with a magnetometer, accelerometer, and gyroscope to obtain the ultimate design. The comparison showed a satisfactory agreement among the complementary filter measurements and UAV measurements in the stable position and the results presented.

Supporting Institution

Ankara üniversitesi BAP, TUSAŞ

Project Number

21Ö0443002

Thanks

We gratefully acknowledge the financial support by Scientific Research Projects of Ankara University (BAP) under Grant no 21Ö0443002. We would also like to thank SEMRUK team members and Dr. Tolga İnal for their support and contribution to the Teknofest UAV competition and TUSAŞ lift-up projects.

References

  • Di Felice, F., Mazzini, A., Di Stefano, G., Romeo, G., Drone high-resolution infrared imaging of the Lusi mud eruption, Mar. Pet. Geo., 90 (2018), 38-51, https://doi.org/10.1016/j.marpetgeo.2017.10.025.
  • Aydin, B., Selvi, E., Tao, J., Starek, M. J., Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting, Drones, 3 (1) (2019), 17, https://doi.org/10.3390/drones3010017.
  • Bodnar, L., Restas, A., Qiang, X., Conceptual approach of measuring the professional and economic effectiveness of drone applications supporting forest fire management, Procedia Eng., 211 (2018), 8-17, https://doi.org/10.1016/j.proeng.2017.12.132.
  • Restas, A., Drone applications for supporting disaster management, World J. Eng. Technol., 3 (2015), 316-321, https://doi.org/10.4236/wjet.2015.33C047.
  • Rao Mogili, U. M., Deepak, V. L., Review on application of drone systems in precision agriculture, Procedia Comp. Sci., 133 (2018), 502-509, https://doi.org/10.1016/j.procs.2018.07.063.
  • Marinello, F., Pezzuolo, A., Chiumenti, A., Sartori, L., Technical analysis of unmanned aerial vehicles (drones) for agricultural applications, Eng. Rural Develop., (2016), 15.
  • Morey, N. S., Mehere, P. N., Hedaoo, K., Agriculture drone for fertilizers and pesticides spraying, Int. J. Eng. App. Technol., 3 (5) (2017).
  • Shaw, I., History of U. S. Drones, Thinking (In) Security, Political Philosophy, and Robots, (2014), https://understandingempire.wordpress.com/2-0-a-brief-history-of-u-sdrones/(2014).
  • Stamp, J., Unmanned drones have been around since world war I [Online]. Retrieved from: http://www.smithsonianmag.com/arts-culture/unmanned-drones-have-beenaround-since-world-war-i-16055939/#ZOkewSDbAgEoRHhA.99.
  • Luppicini, R., So, A., A technological review of commercial drone use in the context of governance, ethics, and privacy, Technol. Soc., 46 (2016), 109-119, https://doi.org/10.1016/j.techsoc.2016.03.003.
  • DigiKey, (2011). Available at: https://www.digikey.com/en/articles/using-anaccelerometer-for-inclination-sensing. [Accessed May 2023].
  • Allan variance: noise analysis for gyroscopes, (2015). Available at: https://telesens.co/wp-content/uploads/2017/05/AllanVariance5087-1.pdf. [Accessed May 2023].
  • Qi, G., Ma, S., Guo, X., Li, X., Guo, J., High-order differential feedback control for quadrotor UAV: theory and experimentation, Electronics, 9 (12) (2020), 2001, https://doi.org/10.3390/electronics9122001.
  • De Pasquale, G., Soma, A., Reliability testing procedure for MEMS IMUs applied to vibrating environments, Sensors, 10 (1) (2010), 456-474, https://doi.org/10.3390/s100100456.
  • IEEE 952, IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros, (1997), https://doi.org/110.1109/IEEESTD.1998.86153.
Year 2024, Volume: 66 Issue: 1, 64 - 81
https://doi.org/10.33769/aupse.1308165

Abstract

Project Number

21Ö0443002

References

  • Di Felice, F., Mazzini, A., Di Stefano, G., Romeo, G., Drone high-resolution infrared imaging of the Lusi mud eruption, Mar. Pet. Geo., 90 (2018), 38-51, https://doi.org/10.1016/j.marpetgeo.2017.10.025.
  • Aydin, B., Selvi, E., Tao, J., Starek, M. J., Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting, Drones, 3 (1) (2019), 17, https://doi.org/10.3390/drones3010017.
  • Bodnar, L., Restas, A., Qiang, X., Conceptual approach of measuring the professional and economic effectiveness of drone applications supporting forest fire management, Procedia Eng., 211 (2018), 8-17, https://doi.org/10.1016/j.proeng.2017.12.132.
  • Restas, A., Drone applications for supporting disaster management, World J. Eng. Technol., 3 (2015), 316-321, https://doi.org/10.4236/wjet.2015.33C047.
  • Rao Mogili, U. M., Deepak, V. L., Review on application of drone systems in precision agriculture, Procedia Comp. Sci., 133 (2018), 502-509, https://doi.org/10.1016/j.procs.2018.07.063.
  • Marinello, F., Pezzuolo, A., Chiumenti, A., Sartori, L., Technical analysis of unmanned aerial vehicles (drones) for agricultural applications, Eng. Rural Develop., (2016), 15.
  • Morey, N. S., Mehere, P. N., Hedaoo, K., Agriculture drone for fertilizers and pesticides spraying, Int. J. Eng. App. Technol., 3 (5) (2017).
  • Shaw, I., History of U. S. Drones, Thinking (In) Security, Political Philosophy, and Robots, (2014), https://understandingempire.wordpress.com/2-0-a-brief-history-of-u-sdrones/(2014).
  • Stamp, J., Unmanned drones have been around since world war I [Online]. Retrieved from: http://www.smithsonianmag.com/arts-culture/unmanned-drones-have-beenaround-since-world-war-i-16055939/#ZOkewSDbAgEoRHhA.99.
  • Luppicini, R., So, A., A technological review of commercial drone use in the context of governance, ethics, and privacy, Technol. Soc., 46 (2016), 109-119, https://doi.org/10.1016/j.techsoc.2016.03.003.
  • DigiKey, (2011). Available at: https://www.digikey.com/en/articles/using-anaccelerometer-for-inclination-sensing. [Accessed May 2023].
  • Allan variance: noise analysis for gyroscopes, (2015). Available at: https://telesens.co/wp-content/uploads/2017/05/AllanVariance5087-1.pdf. [Accessed May 2023].
  • Qi, G., Ma, S., Guo, X., Li, X., Guo, J., High-order differential feedback control for quadrotor UAV: theory and experimentation, Electronics, 9 (12) (2020), 2001, https://doi.org/10.3390/electronics9122001.
  • De Pasquale, G., Soma, A., Reliability testing procedure for MEMS IMUs applied to vibrating environments, Sensors, 10 (1) (2010), 456-474, https://doi.org/10.3390/s100100456.
  • IEEE 952, IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros, (1997), https://doi.org/110.1109/IEEESTD.1998.86153.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Bağış Altınöz 0000-0003-2952-9437

Hüsamettin Eken 0009-0001-2693-4923

Anıl Cönger 0009-0002-4922-5852

Sultan Can 0000-0002-9001-0506

Project Number 21Ö0443002
Early Pub Date April 7, 2024
Publication Date
Submission Date June 14, 2023
Acceptance Date October 27, 2023
Published in Issue Year 2024 Volume: 66 Issue: 1

Cite

APA Altınöz, B., Eken, H., Cönger, A., Can, S. (2024). Modelling inertial measurement unit error parameters for an unmanned air vehicle. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 66(1), 64-81. https://doi.org/10.33769/aupse.1308165
AMA Altınöz B, Eken H, Cönger A, Can S. Modelling inertial measurement unit error parameters for an unmanned air vehicle. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. April 2024;66(1):64-81. doi:10.33769/aupse.1308165
Chicago Altınöz, Bağış, Hüsamettin Eken, Anıl Cönger, and Sultan Can. “Modelling Inertial Measurement Unit Error Parameters for an Unmanned Air Vehicle”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66, no. 1 (April 2024): 64-81. https://doi.org/10.33769/aupse.1308165.
EndNote Altınöz B, Eken H, Cönger A, Can S (April 1, 2024) Modelling inertial measurement unit error parameters for an unmanned air vehicle. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66 1 64–81.
IEEE B. Altınöz, H. Eken, A. Cönger, and S. Can, “Modelling inertial measurement unit error parameters for an unmanned air vehicle”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 66, no. 1, pp. 64–81, 2024, doi: 10.33769/aupse.1308165.
ISNAD Altınöz, Bağış et al. “Modelling Inertial Measurement Unit Error Parameters for an Unmanned Air Vehicle”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66/1 (April 2024), 64-81. https://doi.org/10.33769/aupse.1308165.
JAMA Altınöz B, Eken H, Cönger A, Can S. Modelling inertial measurement unit error parameters for an unmanned air vehicle. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2024;66:64–81.
MLA Altınöz, Bağış et al. “Modelling Inertial Measurement Unit Error Parameters for an Unmanned Air Vehicle”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 66, no. 1, 2024, pp. 64-81, doi:10.33769/aupse.1308165.
Vancouver Altınöz B, Eken H, Cönger A, Can S. Modelling inertial measurement unit error parameters for an unmanned air vehicle. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2024;66(1):64-81.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.